Giyatmi Giyatmi, Tika Annisa Eka Poetri, H. Irianto, D. Fransiska, Agusman Agusman
{"title":"海藻酸盐和聚乙二醇对k-卡拉胶基食用薄膜物理力学特性的影响","authors":"Giyatmi Giyatmi, Tika Annisa Eka Poetri, H. Irianto, D. Fransiska, Agusman Agusman","doi":"10.15578/squalen.v15i1.418","DOIUrl":null,"url":null,"abstract":"Waste disposal problems have attracted scientists around the world to explore the use of renewable resources to produce biodegradable films and coatings. Indonesia has diverse renewable resources of biopolymers that originated from seaweeds such as carrageenan, agar, and alginate. Carrageenan is considered as a potential biopolymer for edible film manufacture due to its characteristic range. This study aimed to develop carrageenan-based edible film using alginate and polyethylene glycol as plasticizers. Edible film made from k-carrageenan with the addition of alginate and polyethylene glycol (PEG) as plasticizers was tested for its mechanical properties, water vapor transmission rate (WVTR) and water solubility. Blending k-carrageenan with alginate (0%, 0.25%, 0.5%, 0.75%, and 1.0% w/v) increased tensile strength, thickness, and water solubility, but reduced elongation at break, WVTR, and moisture content. The addition of PEG (1%, 2%, and 3% w/v) reduced tensile strength and water solubility, but increased elongation at break, thickness, and moisture content. This study recommended that the best carrageenan-based edible film was obtained from a formula using 1% alginate (w/v) and 1% PEG (w/v).","PeriodicalId":21935,"journal":{"name":"Squalen Bulletin of Marine and Fisheries Postharvest and Biotechnology","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Effect of Alginate and Polyethylene Glycol Addition on Physical and Mechanical Characteristics of k-Carrageenan-based Edible Film\",\"authors\":\"Giyatmi Giyatmi, Tika Annisa Eka Poetri, H. Irianto, D. Fransiska, Agusman Agusman\",\"doi\":\"10.15578/squalen.v15i1.418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Waste disposal problems have attracted scientists around the world to explore the use of renewable resources to produce biodegradable films and coatings. Indonesia has diverse renewable resources of biopolymers that originated from seaweeds such as carrageenan, agar, and alginate. Carrageenan is considered as a potential biopolymer for edible film manufacture due to its characteristic range. This study aimed to develop carrageenan-based edible film using alginate and polyethylene glycol as plasticizers. Edible film made from k-carrageenan with the addition of alginate and polyethylene glycol (PEG) as plasticizers was tested for its mechanical properties, water vapor transmission rate (WVTR) and water solubility. Blending k-carrageenan with alginate (0%, 0.25%, 0.5%, 0.75%, and 1.0% w/v) increased tensile strength, thickness, and water solubility, but reduced elongation at break, WVTR, and moisture content. The addition of PEG (1%, 2%, and 3% w/v) reduced tensile strength and water solubility, but increased elongation at break, thickness, and moisture content. This study recommended that the best carrageenan-based edible film was obtained from a formula using 1% alginate (w/v) and 1% PEG (w/v).\",\"PeriodicalId\":21935,\"journal\":{\"name\":\"Squalen Bulletin of Marine and Fisheries Postharvest and Biotechnology\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Squalen Bulletin of Marine and Fisheries Postharvest and Biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15578/squalen.v15i1.418\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Squalen Bulletin of Marine and Fisheries Postharvest and Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15578/squalen.v15i1.418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
Effect of Alginate and Polyethylene Glycol Addition on Physical and Mechanical Characteristics of k-Carrageenan-based Edible Film
Waste disposal problems have attracted scientists around the world to explore the use of renewable resources to produce biodegradable films and coatings. Indonesia has diverse renewable resources of biopolymers that originated from seaweeds such as carrageenan, agar, and alginate. Carrageenan is considered as a potential biopolymer for edible film manufacture due to its characteristic range. This study aimed to develop carrageenan-based edible film using alginate and polyethylene glycol as plasticizers. Edible film made from k-carrageenan with the addition of alginate and polyethylene glycol (PEG) as plasticizers was tested for its mechanical properties, water vapor transmission rate (WVTR) and water solubility. Blending k-carrageenan with alginate (0%, 0.25%, 0.5%, 0.75%, and 1.0% w/v) increased tensile strength, thickness, and water solubility, but reduced elongation at break, WVTR, and moisture content. The addition of PEG (1%, 2%, and 3% w/v) reduced tensile strength and water solubility, but increased elongation at break, thickness, and moisture content. This study recommended that the best carrageenan-based edible film was obtained from a formula using 1% alginate (w/v) and 1% PEG (w/v).