Nitai Sylvetsky, Manoj K. Kesharwani, Jan M. L. Martin
{"title":"S66非共价相互作用基准MP2-F12基集收敛性:互补辅助基集(CABS)的可转移性","authors":"Nitai Sylvetsky, Manoj K. Kesharwani, Jan M. L. Martin","doi":"10.1063/1.5012285","DOIUrl":null,"url":null,"abstract":"Complementary auxiliary basis sets for F12 explicitly correlated calculations appear to be more transferable between orbital basis sets than has been generally assumed. We also find that aVnZ-F12 basis sets, originally developed with anionic systems in mind, appear to be superior for noncovalent interactions as well, and propose a suitable CABS sequence for them.","PeriodicalId":8439,"journal":{"name":"arXiv: Chemical Physics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"MP2-F12 Basis Set Convergence for the S66 Noncovalent Interactions Benchmark: Transferability of the Complementary Auxiliary Basis Set (CABS)\",\"authors\":\"Nitai Sylvetsky, Manoj K. Kesharwani, Jan M. L. Martin\",\"doi\":\"10.1063/1.5012285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Complementary auxiliary basis sets for F12 explicitly correlated calculations appear to be more transferable between orbital basis sets than has been generally assumed. We also find that aVnZ-F12 basis sets, originally developed with anionic systems in mind, appear to be superior for noncovalent interactions as well, and propose a suitable CABS sequence for them.\",\"PeriodicalId\":8439,\"journal\":{\"name\":\"arXiv: Chemical Physics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Chemical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/1.5012285\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Chemical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.5012285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
MP2-F12 Basis Set Convergence for the S66 Noncovalent Interactions Benchmark: Transferability of the Complementary Auxiliary Basis Set (CABS)
Complementary auxiliary basis sets for F12 explicitly correlated calculations appear to be more transferable between orbital basis sets than has been generally assumed. We also find that aVnZ-F12 basis sets, originally developed with anionic systems in mind, appear to be superior for noncovalent interactions as well, and propose a suitable CABS sequence for them.