利用风暴眼预测COVID-19 UI索赔浪潮

Daniel Aaronson, Scott A. Brave, R. Butters, Daniel W. Sacks, Boyoung Seo
{"title":"利用风暴眼预测COVID-19 UI索赔浪潮","authors":"Daniel Aaronson, Scott A. Brave, R. Butters, Daniel W. Sacks, Boyoung Seo","doi":"10.2139/ssrn.3561298","DOIUrl":null,"url":null,"abstract":"We leverage an event-study research design focused on the seven costliest hurricanes to hit the US mainland since 2004 to identify the elasticity of unemployment insurance filings with respect to search intensity. Applying our elasticity estimate to the state-level Google Trends indexes for the topic “unemployment,” we show that out-of-sample forecasts made ahead of the official data releases for March 21 and 28 predicted to a large degree the extent of the Covid-19 related surge in the demand for unemployment insurance. In addition, we provide a robust assessment of the uncertainty surrounding these estimates and demonstrate their use within a broader forecasting framework for US economic activity.","PeriodicalId":13563,"journal":{"name":"Insurance & Financing in Health Economics eJournal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Using the Eye of the Storm to Predict the Wave of COVID-19 UI Claims\",\"authors\":\"Daniel Aaronson, Scott A. Brave, R. Butters, Daniel W. Sacks, Boyoung Seo\",\"doi\":\"10.2139/ssrn.3561298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We leverage an event-study research design focused on the seven costliest hurricanes to hit the US mainland since 2004 to identify the elasticity of unemployment insurance filings with respect to search intensity. Applying our elasticity estimate to the state-level Google Trends indexes for the topic “unemployment,” we show that out-of-sample forecasts made ahead of the official data releases for March 21 and 28 predicted to a large degree the extent of the Covid-19 related surge in the demand for unemployment insurance. In addition, we provide a robust assessment of the uncertainty surrounding these estimates and demonstrate their use within a broader forecasting framework for US economic activity.\",\"PeriodicalId\":13563,\"journal\":{\"name\":\"Insurance & Financing in Health Economics eJournal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Insurance & Financing in Health Economics eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3561298\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insurance & Financing in Health Economics eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3561298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

我们利用事件研究设计,重点关注自2004年以来袭击美国大陆的七个最昂贵的飓风,以确定失业保险申请在搜索强度方面的弹性。将我们的弹性估计应用于“失业”主题的国家级谷歌趋势指数,我们发现,在3月21日和28日官方数据发布之前做出的样本外预测在很大程度上预测了与Covid-19相关的失业保险需求激增的程度。此外,我们对这些估计的不确定性进行了强有力的评估,并展示了它们在美国经济活动更广泛的预测框架中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using the Eye of the Storm to Predict the Wave of COVID-19 UI Claims
We leverage an event-study research design focused on the seven costliest hurricanes to hit the US mainland since 2004 to identify the elasticity of unemployment insurance filings with respect to search intensity. Applying our elasticity estimate to the state-level Google Trends indexes for the topic “unemployment,” we show that out-of-sample forecasts made ahead of the official data releases for March 21 and 28 predicted to a large degree the extent of the Covid-19 related surge in the demand for unemployment insurance. In addition, we provide a robust assessment of the uncertainty surrounding these estimates and demonstrate their use within a broader forecasting framework for US economic activity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Plugging Gaps in Payment Systems: Evidence from the Take-Up of New Medicare Billing Codes Speed Limit Enforcement and Road Safety COVID-19 Vaccination Mandates and Vaccine Uptake Ministers Engage in Favoritism Too Impacts of the COVID-19 Pandemic on Households and Workers in Oregon
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1