{"title":"使用表达规则的专家引导实体抽取","authors":"M. Kejriwal, Runqi Shao, Pedro A. Szekely","doi":"10.1145/3331184.3331392","DOIUrl":null,"url":null,"abstract":"Knowledge Graph Construction (KGC) is an important problem that has many domain-specific applications, including semantic search and predictive analytics. As sophisticated KGC algorithms continue to be proposed, an important, neglected use case is to empower domain experts who do not have much technical background to construct high-fidelity, interpretable knowledge graphs. Such domain experts are a valuable source of input because of their (both formal and learned) knowledge of the domain. In this demonstration paper, we present a system that allows domain experts to construct knowledge graphs by writing sophisticated rule-based entity extractors with minimal training, using a GUI-based editor that offers a range of complex facilities.","PeriodicalId":20700,"journal":{"name":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":"357 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Expert-Guided Entity Extraction using Expressive Rules\",\"authors\":\"M. Kejriwal, Runqi Shao, Pedro A. Szekely\",\"doi\":\"10.1145/3331184.3331392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Knowledge Graph Construction (KGC) is an important problem that has many domain-specific applications, including semantic search and predictive analytics. As sophisticated KGC algorithms continue to be proposed, an important, neglected use case is to empower domain experts who do not have much technical background to construct high-fidelity, interpretable knowledge graphs. Such domain experts are a valuable source of input because of their (both formal and learned) knowledge of the domain. In this demonstration paper, we present a system that allows domain experts to construct knowledge graphs by writing sophisticated rule-based entity extractors with minimal training, using a GUI-based editor that offers a range of complex facilities.\",\"PeriodicalId\":20700,\"journal\":{\"name\":\"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval\",\"volume\":\"357 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3331184.3331392\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3331184.3331392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Expert-Guided Entity Extraction using Expressive Rules
Knowledge Graph Construction (KGC) is an important problem that has many domain-specific applications, including semantic search and predictive analytics. As sophisticated KGC algorithms continue to be proposed, an important, neglected use case is to empower domain experts who do not have much technical background to construct high-fidelity, interpretable knowledge graphs. Such domain experts are a valuable source of input because of their (both formal and learned) knowledge of the domain. In this demonstration paper, we present a system that allows domain experts to construct knowledge graphs by writing sophisticated rule-based entity extractors with minimal training, using a GUI-based editor that offers a range of complex facilities.