Abdul Aziz Shaikh, Souhardya Bera, Swastik Paul, Shibsankar Mondal, Ankit Saha, Subhasish Roy
{"title":"环境修复用无机纳米发光团的合成与表征","authors":"Abdul Aziz Shaikh, Souhardya Bera, Swastik Paul, Shibsankar Mondal, Ankit Saha, Subhasish Roy","doi":"10.1051/fopen/2022021","DOIUrl":null,"url":null,"abstract":"Inorganic Nanoparticle Luminophores have been the focus of ongoing research because of their special characteristics as they approach nanoscale from bulk nature. Besides, their application remains highly diverse compared to bulk zero-valent metals. In this research work, facile and economical borohydride reduction of ferric chloride was undertaken to study the kinetics of phenol photodegradation under simulated sunlight conditions. Further, photoluminescence study was undertaken to calculate the lowest energy transition of our synthesized sample. The synthesized NPs were analyzed using XRD. SEM and TEM data showed the presence of an interconnected network of nanospheresof uniform morphology in the particle range of 20–60 nm, with formation of long-chain of aggregates-characteristic of mixed valent iron oxides, which predominates on a rapidly oxidizing nZVI particle system. The photodegradation studies showed a promising result, degrading nearly the complete concentration of phenol within 24 hours. PL study reported the lowest energy transition at 1.72 eV which alternatively confirms its application as a photocatalyst in diverse fields of wastewater remediation.","PeriodicalId":6841,"journal":{"name":"4open","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Synthesis and characterization of Inorganic Nanoparticles Luminophores for Environmental Remediation\",\"authors\":\"Abdul Aziz Shaikh, Souhardya Bera, Swastik Paul, Shibsankar Mondal, Ankit Saha, Subhasish Roy\",\"doi\":\"10.1051/fopen/2022021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inorganic Nanoparticle Luminophores have been the focus of ongoing research because of their special characteristics as they approach nanoscale from bulk nature. Besides, their application remains highly diverse compared to bulk zero-valent metals. In this research work, facile and economical borohydride reduction of ferric chloride was undertaken to study the kinetics of phenol photodegradation under simulated sunlight conditions. Further, photoluminescence study was undertaken to calculate the lowest energy transition of our synthesized sample. The synthesized NPs were analyzed using XRD. SEM and TEM data showed the presence of an interconnected network of nanospheresof uniform morphology in the particle range of 20–60 nm, with formation of long-chain of aggregates-characteristic of mixed valent iron oxides, which predominates on a rapidly oxidizing nZVI particle system. The photodegradation studies showed a promising result, degrading nearly the complete concentration of phenol within 24 hours. PL study reported the lowest energy transition at 1.72 eV which alternatively confirms its application as a photocatalyst in diverse fields of wastewater remediation.\",\"PeriodicalId\":6841,\"journal\":{\"name\":\"4open\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"4open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/fopen/2022021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"4open","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/fopen/2022021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Synthesis and characterization of Inorganic Nanoparticles Luminophores for Environmental Remediation
Inorganic Nanoparticle Luminophores have been the focus of ongoing research because of their special characteristics as they approach nanoscale from bulk nature. Besides, their application remains highly diverse compared to bulk zero-valent metals. In this research work, facile and economical borohydride reduction of ferric chloride was undertaken to study the kinetics of phenol photodegradation under simulated sunlight conditions. Further, photoluminescence study was undertaken to calculate the lowest energy transition of our synthesized sample. The synthesized NPs were analyzed using XRD. SEM and TEM data showed the presence of an interconnected network of nanospheresof uniform morphology in the particle range of 20–60 nm, with formation of long-chain of aggregates-characteristic of mixed valent iron oxides, which predominates on a rapidly oxidizing nZVI particle system. The photodegradation studies showed a promising result, degrading nearly the complete concentration of phenol within 24 hours. PL study reported the lowest energy transition at 1.72 eV which alternatively confirms its application as a photocatalyst in diverse fields of wastewater remediation.