在恶劣工业环境中优化toa定位的综合方法

A. Lewandowski, C. Wietfeld
{"title":"在恶劣工业环境中优化toa定位的综合方法","authors":"A. Lewandowski, C. Wietfeld","doi":"10.1109/PLANS.2010.5507255","DOIUrl":null,"url":null,"abstract":"Real-life industrial environments pose a challenge for today's radio-based localization systems, as the radio channel is highly affected by the multiple interference present in the environment. Therefore, this paper presents a solution for generating Weighted Multilateration Position Estimation based on the RSSI (Received Signal Strength Indicator) for ToA (Time of Arrival) ranging measurements to enhance the fault tolerance, reduce the self-interference of the ranging system and finally enhance the accuracy of the position estimation. A coordinate descent algorithm for optimal anchor placement is demonstrated in this paper, which is based on results of 3D ray tracing. The applied 3D environment model is highly sophisticated, as it was generated by 3D laser scanning for gauging. In a final optimization step, power level adjustment is shown to further enhance the accuracy of the localization system. Concluding, a performance evaluation based on simulations, numerical optimization and experimental measurements in the industrial target environment will demonstrate the improvements of our comprehensive approach in terms of accuracy and robustness.","PeriodicalId":94036,"journal":{"name":"IEEE/ION Position Location and Navigation Symposium : [proceedings]. IEEE/ION Position Location and Navigation Symposium","volume":"56 1","pages":"516-525"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"A comprehensive approach for optimizing ToA-localization in harsh industrial environments\",\"authors\":\"A. Lewandowski, C. Wietfeld\",\"doi\":\"10.1109/PLANS.2010.5507255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Real-life industrial environments pose a challenge for today's radio-based localization systems, as the radio channel is highly affected by the multiple interference present in the environment. Therefore, this paper presents a solution for generating Weighted Multilateration Position Estimation based on the RSSI (Received Signal Strength Indicator) for ToA (Time of Arrival) ranging measurements to enhance the fault tolerance, reduce the self-interference of the ranging system and finally enhance the accuracy of the position estimation. A coordinate descent algorithm for optimal anchor placement is demonstrated in this paper, which is based on results of 3D ray tracing. The applied 3D environment model is highly sophisticated, as it was generated by 3D laser scanning for gauging. In a final optimization step, power level adjustment is shown to further enhance the accuracy of the localization system. Concluding, a performance evaluation based on simulations, numerical optimization and experimental measurements in the industrial target environment will demonstrate the improvements of our comprehensive approach in terms of accuracy and robustness.\",\"PeriodicalId\":94036,\"journal\":{\"name\":\"IEEE/ION Position Location and Navigation Symposium : [proceedings]. IEEE/ION Position Location and Navigation Symposium\",\"volume\":\"56 1\",\"pages\":\"516-525\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE/ION Position Location and Navigation Symposium : [proceedings]. IEEE/ION Position Location and Navigation Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PLANS.2010.5507255\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ION Position Location and Navigation Symposium : [proceedings]. IEEE/ION Position Location and Navigation Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PLANS.2010.5507255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

现实生活中的工业环境对当今基于无线电的定位系统提出了挑战,因为无线电信道受到环境中存在的多重干扰的高度影响。因此,本文提出了一种基于RSSI (Received Signal Strength Indicator,接收信号强度指标)对ToA(到达时间)测距测量产生加权多重位置估计的解决方案,以增强测距系统的容错性,降低测距系统的自干扰,最终提高位置估计的精度。本文提出了一种基于三维光线追踪结果的坐标下降算法。应用的三维环境模型非常复杂,因为它是通过三维激光扫描测量生成的。在最后的优化步骤中,通过功率电平调整来进一步提高定位系统的精度。最后,基于仿真、数值优化和工业目标环境实验测量的性能评估将证明我们的综合方法在准确性和鲁棒性方面的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A comprehensive approach for optimizing ToA-localization in harsh industrial environments
Real-life industrial environments pose a challenge for today's radio-based localization systems, as the radio channel is highly affected by the multiple interference present in the environment. Therefore, this paper presents a solution for generating Weighted Multilateration Position Estimation based on the RSSI (Received Signal Strength Indicator) for ToA (Time of Arrival) ranging measurements to enhance the fault tolerance, reduce the self-interference of the ranging system and finally enhance the accuracy of the position estimation. A coordinate descent algorithm for optimal anchor placement is demonstrated in this paper, which is based on results of 3D ray tracing. The applied 3D environment model is highly sophisticated, as it was generated by 3D laser scanning for gauging. In a final optimization step, power level adjustment is shown to further enhance the accuracy of the localization system. Concluding, a performance evaluation based on simulations, numerical optimization and experimental measurements in the industrial target environment will demonstrate the improvements of our comprehensive approach in terms of accuracy and robustness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Innovative Multicarrier Broadband Waveforms for Future GNSS Applications - A System Overview Inertial Navigation on Extremely Resource-Constrained Platforms: Methods, Opportunities and Challenges. Doppler Processing for Satellite Navigation Q-Learning Model Covariance Adaptation of Rao-Blackwellized Particle Filtering in Airborne Geomagnetic Navigation Research on multi-model adaptive hull deformation measurement algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1