J. Alwidian, Tariq N. Khasawneh, Mahmoud Alsahlee, Ali A. Safia
{"title":"社交媒体情感分析的在线机器学习方法","authors":"J. Alwidian, Tariq N. Khasawneh, Mahmoud Alsahlee, Ali A. Safia","doi":"10.5539/mas.v16n4p29","DOIUrl":null,"url":null,"abstract":"The online learning, is one that continuously adapts to arriving data, and gets updated incrementally instance by instance. In this paper, we compare the performance of different online machine learning algorithms for the task of sentiment analysis on challenging text datasets. We assess the models using a wide range of metrics, such as microF1, macroF1, accuracy, and running time. Our experiments have revealed that these online models provide a viable alternative to traditional offline machine learning in sentiment analysis, in fraction of the time.","PeriodicalId":18713,"journal":{"name":"Modern Applied Science","volume":"165 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Online Machine Learning Approach to Sentiment Analysis in Social Media\",\"authors\":\"J. Alwidian, Tariq N. Khasawneh, Mahmoud Alsahlee, Ali A. Safia\",\"doi\":\"10.5539/mas.v16n4p29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The online learning, is one that continuously adapts to arriving data, and gets updated incrementally instance by instance. In this paper, we compare the performance of different online machine learning algorithms for the task of sentiment analysis on challenging text datasets. We assess the models using a wide range of metrics, such as microF1, macroF1, accuracy, and running time. Our experiments have revealed that these online models provide a viable alternative to traditional offline machine learning in sentiment analysis, in fraction of the time.\",\"PeriodicalId\":18713,\"journal\":{\"name\":\"Modern Applied Science\",\"volume\":\"165 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modern Applied Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5539/mas.v16n4p29\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Applied Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5539/mas.v16n4p29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Online Machine Learning Approach to Sentiment Analysis in Social Media
The online learning, is one that continuously adapts to arriving data, and gets updated incrementally instance by instance. In this paper, we compare the performance of different online machine learning algorithms for the task of sentiment analysis on challenging text datasets. We assess the models using a wide range of metrics, such as microF1, macroF1, accuracy, and running time. Our experiments have revealed that these online models provide a viable alternative to traditional offline machine learning in sentiment analysis, in fraction of the time.