用粒子图像测速法估计涡轮增压器进气道湍流长度尺度

D. Banerjee, A. Selamet, R. Dehner
{"title":"用粒子图像测速法估计涡轮增压器进气道湍流长度尺度","authors":"D. Banerjee, A. Selamet, R. Dehner","doi":"10.1115/fedsm2021-63456","DOIUrl":null,"url":null,"abstract":"\n Stereoscopic Particle Image Velocimetry measurements are carried out at the inlet of a turbocharger compressor at four different shaft speeds from 80,000 rpm to 140,000 rpm and over the entire range of flow rates from choke to mild surge. This paper describes the procedure used in processing the PIV data leading to the estimates of turbulent length scales – integral, Taylor, and Kolmogorov, to enhance the fundamental understanding and characterization of the compressor inlet flow field. The analysis reveals that at most operating conditions the three different length scales have markedly different magnitudes, as expected, while they have somewhat similar qualitative distributions with respect to the duct radius. For example, at 80,000 rpm and at a flow rate of 15.7 g/s (mild surge), the longitudinal integral length scale is of the order of 15 mm, the Taylor scale is around 0.5 mm, and the Kolmogorov scale is about 10 microns. With the onset of flow reversal, the turbulent kinetic energy and turbulent intensity at the compressor inlet are observed to increase rapidly, while the magnitudes of the Kolmogorov scale and to a certain extent, the Taylor scale are found to decrease suggesting that the increased turbulence gives rise to even smaller flow structures. The variation of length scales with compressor shaft speed has also been studied.","PeriodicalId":23636,"journal":{"name":"Volume 2: Fluid Applications and Systems; Fluid Measurement and Instrumentation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimation of Turbulent Length Scales at a Turbocharger Inlet Using Particle Image Velocimetry\",\"authors\":\"D. Banerjee, A. Selamet, R. Dehner\",\"doi\":\"10.1115/fedsm2021-63456\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Stereoscopic Particle Image Velocimetry measurements are carried out at the inlet of a turbocharger compressor at four different shaft speeds from 80,000 rpm to 140,000 rpm and over the entire range of flow rates from choke to mild surge. This paper describes the procedure used in processing the PIV data leading to the estimates of turbulent length scales – integral, Taylor, and Kolmogorov, to enhance the fundamental understanding and characterization of the compressor inlet flow field. The analysis reveals that at most operating conditions the three different length scales have markedly different magnitudes, as expected, while they have somewhat similar qualitative distributions with respect to the duct radius. For example, at 80,000 rpm and at a flow rate of 15.7 g/s (mild surge), the longitudinal integral length scale is of the order of 15 mm, the Taylor scale is around 0.5 mm, and the Kolmogorov scale is about 10 microns. With the onset of flow reversal, the turbulent kinetic energy and turbulent intensity at the compressor inlet are observed to increase rapidly, while the magnitudes of the Kolmogorov scale and to a certain extent, the Taylor scale are found to decrease suggesting that the increased turbulence gives rise to even smaller flow structures. The variation of length scales with compressor shaft speed has also been studied.\",\"PeriodicalId\":23636,\"journal\":{\"name\":\"Volume 2: Fluid Applications and Systems; Fluid Measurement and Instrumentation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2: Fluid Applications and Systems; Fluid Measurement and Instrumentation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/fedsm2021-63456\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: Fluid Applications and Systems; Fluid Measurement and Instrumentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/fedsm2021-63456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

立体粒子图像测速技术在涡轮增压器压气机的入口进行测量,测量范围为4种不同的轴速,从80000转/分到140,000转/分,以及从窒息到轻度喘振的整个流量范围。本文描述了用于处理PIV数据的程序,导致湍流长度尺度的估计-积分,泰勒和Kolmogorov,以增强对压气机进口流场的基本理解和表征。分析表明,在大多数操作条件下,三种不同的长度尺度有明显不同的量级,正如预期的那样,而它们在管道半径方面有一些相似的定性分布。例如,在80000转/分,流速为15.7 g/s(轻度喘振)时,纵向积分长度标度约为15毫米,泰勒标度约为0.5毫米,Kolmogorov标度约为10微米。随着流动反转的开始,压气机进口处的湍流动能和湍流强度迅速增加,而Kolmogorov尺度和Taylor尺度在一定程度上减小,这表明湍流的增加导致了更小的流动结构。研究了长度尺度随压气机轴转速的变化规律。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Estimation of Turbulent Length Scales at a Turbocharger Inlet Using Particle Image Velocimetry
Stereoscopic Particle Image Velocimetry measurements are carried out at the inlet of a turbocharger compressor at four different shaft speeds from 80,000 rpm to 140,000 rpm and over the entire range of flow rates from choke to mild surge. This paper describes the procedure used in processing the PIV data leading to the estimates of turbulent length scales – integral, Taylor, and Kolmogorov, to enhance the fundamental understanding and characterization of the compressor inlet flow field. The analysis reveals that at most operating conditions the three different length scales have markedly different magnitudes, as expected, while they have somewhat similar qualitative distributions with respect to the duct radius. For example, at 80,000 rpm and at a flow rate of 15.7 g/s (mild surge), the longitudinal integral length scale is of the order of 15 mm, the Taylor scale is around 0.5 mm, and the Kolmogorov scale is about 10 microns. With the onset of flow reversal, the turbulent kinetic energy and turbulent intensity at the compressor inlet are observed to increase rapidly, while the magnitudes of the Kolmogorov scale and to a certain extent, the Taylor scale are found to decrease suggesting that the increased turbulence gives rise to even smaller flow structures. The variation of length scales with compressor shaft speed has also been studied.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fluid Dynamics and Contact Stress on Hard Sealing Surface Analysis of LNG Cryogenic Ball Valve 0D Modeling of Fuel Tank for Vapor Generation Impact of Urban Microclimate on Air Conditioning Energy Consumption Using Different Convective Heat Transfer Coefficient Correlations Available in Building Energy Simulation Tools Study on Overall Design of a Vertical Take-Off and Landing Unmanned Aerial Vehicle Powered by Electric Ducted Fans Influence of the Topological Structures of the Nose of High-Speed Maglev Train on Aerodynamic Performances
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1