{"title":"基于改进粒子群算法的电力系统多目标优化调度分析","authors":"Gong Mengting","doi":"10.13052/dgaej2156-3306.38511","DOIUrl":null,"url":null,"abstract":"Economic Environmental Dispatching (EED) in power systems is a multi-variable, strongly constrained, non-convex, multi-objective optimization problem that is difficult to properly handle using traditional methods. However, the application of particle swarm optimization algorithms may result in insufficient population diversity and easy to fall into local optimization problems. Therefore, this paper proposes an adaptive backbone multi-objective particle swarm optimization (ABBMOPSO) method to solve the economic and environmental scheduling problems of power systems. This paper first analyzes the topology and computational flow of particle swarm optimization algorithms, and then constructs a multi-objective optimization research framework that integrates Pareto optimization principles for the scheduling of power generation units. The execution algorithm is the improved multi-objective particle swarm optimization algorithm (MOPSO). This paper establishes a mathematical model for the economic and environmental scheduling of power systems, which optimizes conflicting fuel cost functions and pollutant emission functions simultaneously, taking into account nonlinear constraints such as load balance constraints and unit operation constraints. The improved ABBMOPSO algorithm is used to optimize the solution to improve the global search ability of the EED model. The simulation data of seven units show that the ABBMOPSO algorithm has a minimum power generation cost of 588.1 $/h and a minimum pollutant emission of 0.192 t/h, which is significantly superior to other algorithms and reduces the number of iterations, with good feasibility.","PeriodicalId":11205,"journal":{"name":"Distributed Generation & Alternative Energy Journal","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-objective Optimal Scheduling Analysis of Power System Based on Improved Particle Swarm Algorithm\",\"authors\":\"Gong Mengting\",\"doi\":\"10.13052/dgaej2156-3306.38511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Economic Environmental Dispatching (EED) in power systems is a multi-variable, strongly constrained, non-convex, multi-objective optimization problem that is difficult to properly handle using traditional methods. However, the application of particle swarm optimization algorithms may result in insufficient population diversity and easy to fall into local optimization problems. Therefore, this paper proposes an adaptive backbone multi-objective particle swarm optimization (ABBMOPSO) method to solve the economic and environmental scheduling problems of power systems. This paper first analyzes the topology and computational flow of particle swarm optimization algorithms, and then constructs a multi-objective optimization research framework that integrates Pareto optimization principles for the scheduling of power generation units. The execution algorithm is the improved multi-objective particle swarm optimization algorithm (MOPSO). This paper establishes a mathematical model for the economic and environmental scheduling of power systems, which optimizes conflicting fuel cost functions and pollutant emission functions simultaneously, taking into account nonlinear constraints such as load balance constraints and unit operation constraints. The improved ABBMOPSO algorithm is used to optimize the solution to improve the global search ability of the EED model. The simulation data of seven units show that the ABBMOPSO algorithm has a minimum power generation cost of 588.1 $/h and a minimum pollutant emission of 0.192 t/h, which is significantly superior to other algorithms and reduces the number of iterations, with good feasibility.\",\"PeriodicalId\":11205,\"journal\":{\"name\":\"Distributed Generation & Alternative Energy Journal\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Distributed Generation & Alternative Energy Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13052/dgaej2156-3306.38511\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Distributed Generation & Alternative Energy Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/dgaej2156-3306.38511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-objective Optimal Scheduling Analysis of Power System Based on Improved Particle Swarm Algorithm
Economic Environmental Dispatching (EED) in power systems is a multi-variable, strongly constrained, non-convex, multi-objective optimization problem that is difficult to properly handle using traditional methods. However, the application of particle swarm optimization algorithms may result in insufficient population diversity and easy to fall into local optimization problems. Therefore, this paper proposes an adaptive backbone multi-objective particle swarm optimization (ABBMOPSO) method to solve the economic and environmental scheduling problems of power systems. This paper first analyzes the topology and computational flow of particle swarm optimization algorithms, and then constructs a multi-objective optimization research framework that integrates Pareto optimization principles for the scheduling of power generation units. The execution algorithm is the improved multi-objective particle swarm optimization algorithm (MOPSO). This paper establishes a mathematical model for the economic and environmental scheduling of power systems, which optimizes conflicting fuel cost functions and pollutant emission functions simultaneously, taking into account nonlinear constraints such as load balance constraints and unit operation constraints. The improved ABBMOPSO algorithm is used to optimize the solution to improve the global search ability of the EED model. The simulation data of seven units show that the ABBMOPSO algorithm has a minimum power generation cost of 588.1 $/h and a minimum pollutant emission of 0.192 t/h, which is significantly superior to other algorithms and reduces the number of iterations, with good feasibility.