基于滑模法的永磁同步电机速度辨识与控制

Zhugang Ding, G. Wei, Xueming Ding
{"title":"基于滑模法的永磁同步电机速度辨识与控制","authors":"Zhugang Ding, G. Wei, Xueming Ding","doi":"10.1080/21642583.2014.886974","DOIUrl":null,"url":null,"abstract":"In this paper, speed identification and control problems are simultaneously considered for a permanent magnet synchronous motor (PMSM) based on the sliding mode technique. To eliminate the mechanical sensors, an observer is designed to identify the speed of PMSM based on a variable-structure model reference adaptive system, in which a sigmoid function with an adaptive gain is applied to replace the conventional signum function to cope with the chattering problem caused by the discontinuous switch function. Then, a sliding mode speed regulator is developed to overcome the limitations of traditional proportion integration scheme. Desired flexibility, adaptability and high precision are obtained and the stability of the closed-loop system is guaranteed by the proposed strategy. The results of simulation by MATLAB/Simulink indicate that the speed could be estimated and adjusted precisely, and the dynamical property of system is evidently improved.","PeriodicalId":22127,"journal":{"name":"Systems Science & Control Engineering: An Open Access Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Speed identification and control for permanent magnet synchronous motor via sliding mode approach\",\"authors\":\"Zhugang Ding, G. Wei, Xueming Ding\",\"doi\":\"10.1080/21642583.2014.886974\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, speed identification and control problems are simultaneously considered for a permanent magnet synchronous motor (PMSM) based on the sliding mode technique. To eliminate the mechanical sensors, an observer is designed to identify the speed of PMSM based on a variable-structure model reference adaptive system, in which a sigmoid function with an adaptive gain is applied to replace the conventional signum function to cope with the chattering problem caused by the discontinuous switch function. Then, a sliding mode speed regulator is developed to overcome the limitations of traditional proportion integration scheme. Desired flexibility, adaptability and high precision are obtained and the stability of the closed-loop system is guaranteed by the proposed strategy. The results of simulation by MATLAB/Simulink indicate that the speed could be estimated and adjusted precisely, and the dynamical property of system is evidently improved.\",\"PeriodicalId\":22127,\"journal\":{\"name\":\"Systems Science & Control Engineering: An Open Access Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systems Science & Control Engineering: An Open Access Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/21642583.2014.886974\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems Science & Control Engineering: An Open Access Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21642583.2014.886974","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文研究了基于滑模变结构的永磁同步电动机的速度辨识与控制问题。为了消除机械传感器的干扰,设计了一种基于变结构模型参考自适应系统的永磁同步电机速度观测器,采用具有自适应增益的sigmoid函数代替传统的sigmoid函数,以解决开关函数不连续引起的抖振问题。然后,针对传统比例积分方案的局限性,提出了一种滑模调速方案。该策略在保证闭环系统稳定性的前提下,获得了理想的柔性、自适应性和高精度。通过MATLAB/Simulink的仿真结果表明,该方法可以精确地估计和调整速度,并明显改善了系统的动态性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Speed identification and control for permanent magnet synchronous motor via sliding mode approach
In this paper, speed identification and control problems are simultaneously considered for a permanent magnet synchronous motor (PMSM) based on the sliding mode technique. To eliminate the mechanical sensors, an observer is designed to identify the speed of PMSM based on a variable-structure model reference adaptive system, in which a sigmoid function with an adaptive gain is applied to replace the conventional signum function to cope with the chattering problem caused by the discontinuous switch function. Then, a sliding mode speed regulator is developed to overcome the limitations of traditional proportion integration scheme. Desired flexibility, adaptability and high precision are obtained and the stability of the closed-loop system is guaranteed by the proposed strategy. The results of simulation by MATLAB/Simulink indicate that the speed could be estimated and adjusted precisely, and the dynamical property of system is evidently improved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analytical solutions to LQG homing problems in one dimension Analysis and circuit design of a fractional-order Lorenz system with different fractional orders A nonlinear oscillator with strange attractors featured Sinai-Ruelle-Bowen measure Research on a chaotic circuit based on an active TiO 2 memristor Robust and resilient state-dependent control of continuous-time nonlinear systems with general performance criteria
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1