{"title":"柴油波浪破碎模型在非反应性汽油喷雾大涡模拟中的适应性数值研究","authors":"R. Sok, Beini Zhou, Jin Kusaka","doi":"10.1115/power2021-64537","DOIUrl":null,"url":null,"abstract":"\n Gasoline direct injection (GDI) is a promising solution to increase engine thermal efficiency and reduce exhaust gas emissions. The GDI operation requires an understanding of fuel penetration and droplet size, which can be investigated numerically. In the numerical simulation, primary and secondary breakup phenomena are studied by the Kelvin-Helmholtz/Rayleigh-Taylor (KH-RT) wave breakup models. The models were initially developed for diesel fuel injection, and in the present work, the models are extended to the GDI application combined using large-eddy simulation (LES). The simulation is conducted using the KIVA4 code.\n Measured data of experimental spray penetration and Mie-scattering image comparisons are carried out under non-reactive conditions at an ambient temperature of 613K and a density of 4.84 kg/m3. The spray penetration and structures using LES are compared with traditional Reynolds-Averaged Navier-Stokes (RANS). Grid size effects in the simulation using LES and RANS models are also investigated to find a reasonable cell size for future reactive gasoline spray/combustion studies. The fuel spray penetration and droplet size are dependent on specific parameters. Parametric studies on the effects of adjustable constants of the KH-RT models, such as time constants, size constants, and breakup length constant, are discussed. Liquid penetrations from the RANS turbulence model are similar to that of the LES turbulence model’s prediction. However, the RANS model is not able to capture the spray structure well.","PeriodicalId":8567,"journal":{"name":"ASME 2021 Power Conference","volume":"375 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Study on the Adaptation of Diesel Wave Breakup Model for Large-Eddy Simulation of Non-Reactive Gasoline Spray\",\"authors\":\"R. Sok, Beini Zhou, Jin Kusaka\",\"doi\":\"10.1115/power2021-64537\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Gasoline direct injection (GDI) is a promising solution to increase engine thermal efficiency and reduce exhaust gas emissions. The GDI operation requires an understanding of fuel penetration and droplet size, which can be investigated numerically. In the numerical simulation, primary and secondary breakup phenomena are studied by the Kelvin-Helmholtz/Rayleigh-Taylor (KH-RT) wave breakup models. The models were initially developed for diesel fuel injection, and in the present work, the models are extended to the GDI application combined using large-eddy simulation (LES). The simulation is conducted using the KIVA4 code.\\n Measured data of experimental spray penetration and Mie-scattering image comparisons are carried out under non-reactive conditions at an ambient temperature of 613K and a density of 4.84 kg/m3. The spray penetration and structures using LES are compared with traditional Reynolds-Averaged Navier-Stokes (RANS). Grid size effects in the simulation using LES and RANS models are also investigated to find a reasonable cell size for future reactive gasoline spray/combustion studies. The fuel spray penetration and droplet size are dependent on specific parameters. Parametric studies on the effects of adjustable constants of the KH-RT models, such as time constants, size constants, and breakup length constant, are discussed. Liquid penetrations from the RANS turbulence model are similar to that of the LES turbulence model’s prediction. However, the RANS model is not able to capture the spray structure well.\",\"PeriodicalId\":8567,\"journal\":{\"name\":\"ASME 2021 Power Conference\",\"volume\":\"375 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASME 2021 Power Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/power2021-64537\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2021 Power Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/power2021-64537","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
汽油直喷(GDI)是一个很有前途的解决方案,以提高发动机的热效率和减少废气排放。GDI操作需要了解燃料渗透和液滴大小,这可以进行数值研究。在数值模拟中,采用Kelvin-Helmholtz/Rayleigh-Taylor (KH-RT)波破裂模型研究了初级和次级破裂现象。该模型最初是针对柴油喷射建立的,在本工作中,将该模型与大涡模拟(LES)相结合,扩展到直喷发动机的应用。使用KIVA4代码进行仿真。在无反应条件下,在环境温度为613K,密度为4.84 kg/m3的条件下,进行了实验喷雾穿透测量数据和mie散射图像对比。并与传统的RANS (reynolds - average Navier-Stokes)方法进行了比较。在使用LES和RANS模型的模拟中,还研究了网格尺寸的影响,以便为未来的反应性汽油喷雾/燃烧研究找到合理的电池尺寸。燃油喷射穿透度和液滴大小取决于特定的参数。讨论了时间常数、尺寸常数和破裂长度常数等可调常数对KH-RT模型的影响。RANS湍流模型预测的液体穿透量与LES湍流模型预测的相似。然而,RANS模型不能很好地捕捉喷雾结构。
Numerical Study on the Adaptation of Diesel Wave Breakup Model for Large-Eddy Simulation of Non-Reactive Gasoline Spray
Gasoline direct injection (GDI) is a promising solution to increase engine thermal efficiency and reduce exhaust gas emissions. The GDI operation requires an understanding of fuel penetration and droplet size, which can be investigated numerically. In the numerical simulation, primary and secondary breakup phenomena are studied by the Kelvin-Helmholtz/Rayleigh-Taylor (KH-RT) wave breakup models. The models were initially developed for diesel fuel injection, and in the present work, the models are extended to the GDI application combined using large-eddy simulation (LES). The simulation is conducted using the KIVA4 code.
Measured data of experimental spray penetration and Mie-scattering image comparisons are carried out under non-reactive conditions at an ambient temperature of 613K and a density of 4.84 kg/m3. The spray penetration and structures using LES are compared with traditional Reynolds-Averaged Navier-Stokes (RANS). Grid size effects in the simulation using LES and RANS models are also investigated to find a reasonable cell size for future reactive gasoline spray/combustion studies. The fuel spray penetration and droplet size are dependent on specific parameters. Parametric studies on the effects of adjustable constants of the KH-RT models, such as time constants, size constants, and breakup length constant, are discussed. Liquid penetrations from the RANS turbulence model are similar to that of the LES turbulence model’s prediction. However, the RANS model is not able to capture the spray structure well.