{"title":"非均匀二维莫特-格尼定律","authors":"Y. Zhu, L. Ang","doi":"10.1109/PLASMA.2013.6634947","DOIUrl":null,"url":null,"abstract":"For high charge injection into a solid dielectric, the 1D current density is described by the classical Mott-Gurney (MG) law for trap-free solid and Mark-Helfrich (HF) law for trap-filled solid. Recently, due to the development of nanotechnology, the geometry current enhancement is observed in many experiment, such as electron transport in nanowire. In this paper, we develop a numerical method to solved the 2D space charge limited current problem.","PeriodicalId":6313,"journal":{"name":"2013 Abstracts IEEE International Conference on Plasma Science (ICOPS)","volume":"82 1","pages":"1-1"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Nonuniform 2D Mott-Gurney law\",\"authors\":\"Y. Zhu, L. Ang\",\"doi\":\"10.1109/PLASMA.2013.6634947\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For high charge injection into a solid dielectric, the 1D current density is described by the classical Mott-Gurney (MG) law for trap-free solid and Mark-Helfrich (HF) law for trap-filled solid. Recently, due to the development of nanotechnology, the geometry current enhancement is observed in many experiment, such as electron transport in nanowire. In this paper, we develop a numerical method to solved the 2D space charge limited current problem.\",\"PeriodicalId\":6313,\"journal\":{\"name\":\"2013 Abstracts IEEE International Conference on Plasma Science (ICOPS)\",\"volume\":\"82 1\",\"pages\":\"1-1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Abstracts IEEE International Conference on Plasma Science (ICOPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PLASMA.2013.6634947\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Abstracts IEEE International Conference on Plasma Science (ICOPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PLASMA.2013.6634947","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
For high charge injection into a solid dielectric, the 1D current density is described by the classical Mott-Gurney (MG) law for trap-free solid and Mark-Helfrich (HF) law for trap-filled solid. Recently, due to the development of nanotechnology, the geometry current enhancement is observed in many experiment, such as electron transport in nanowire. In this paper, we develop a numerical method to solved the 2D space charge limited current problem.