发泡过程中变形致气泡聚并的粘弹性模拟

Y. Otsuki, Takashi Umeda, Ryoichi Tsunori, Masayuki Shinohara
{"title":"发泡过程中变形致气泡聚并的粘弹性模拟","authors":"Y. Otsuki, Takashi Umeda, Ryoichi Tsunori, Masayuki Shinohara","doi":"10.1678/RHEOLOGY.33.9","DOIUrl":null,"url":null,"abstract":"Viscoelastic simulations of deformation-induced bubble coalescence in forming process under isothermal condition were carried out. Multi mode PTT model was used in a simplified model for deformation of Polypropylene(PP) melt between bubbles in plane strain. 2-Dimentional Lagrangian FEM was adopted in the unsteady creeping flow simulation. The numerical results demonstrates that the thinnest part between neighboring gas bubbles is easily deformable and consequently coalescence occurs. Still more, creep recovery by elastic residual stress promotes the coalescence. The strain-hardening property is very effective to the coalescence prevention. Furthermore, the relaxation time distribution of polymer melts has significant influence on the behavior. Composition of the relaxation time that is a little longer than the elongational time makes a deformed bubble unstable and causes bubbles to coalesce. The numerical simulation could explain the deference in appearances of foamed sheets made of various PP.","PeriodicalId":17434,"journal":{"name":"Journal of the Society of Rheology, Japan","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2005-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Viscoelastic Simulation of Deformation-Induced Bubble Coalescence in Foaming Process\",\"authors\":\"Y. Otsuki, Takashi Umeda, Ryoichi Tsunori, Masayuki Shinohara\",\"doi\":\"10.1678/RHEOLOGY.33.9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Viscoelastic simulations of deformation-induced bubble coalescence in forming process under isothermal condition were carried out. Multi mode PTT model was used in a simplified model for deformation of Polypropylene(PP) melt between bubbles in plane strain. 2-Dimentional Lagrangian FEM was adopted in the unsteady creeping flow simulation. The numerical results demonstrates that the thinnest part between neighboring gas bubbles is easily deformable and consequently coalescence occurs. Still more, creep recovery by elastic residual stress promotes the coalescence. The strain-hardening property is very effective to the coalescence prevention. Furthermore, the relaxation time distribution of polymer melts has significant influence on the behavior. Composition of the relaxation time that is a little longer than the elongational time makes a deformed bubble unstable and causes bubbles to coalesce. The numerical simulation could explain the deference in appearances of foamed sheets made of various PP.\",\"PeriodicalId\":17434,\"journal\":{\"name\":\"Journal of the Society of Rheology, Japan\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Society of Rheology, Japan\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1678/RHEOLOGY.33.9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Society of Rheology, Japan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1678/RHEOLOGY.33.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

对等温条件下成形过程中变形诱导的气泡聚并进行了粘弹性模拟。采用多模态PTT模型建立了聚丙烯(PP)熔体在平面应变下气泡间变形的简化模型。采用二维拉格朗日有限元法进行非定常蠕变流动模拟。数值计算结果表明,相邻气泡之间最薄的部分容易变形,从而发生聚并。此外,弹性残余应力的蠕变恢复促进了聚并。应变硬化性能对防止聚结非常有效。此外,聚合物熔体的弛豫时间分布对其行为有显著影响。松弛时间比拉伸时间稍长的组成使变形气泡不稳定,并导致气泡合并。数值模拟可以解释不同PP发泡板的外观差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Viscoelastic Simulation of Deformation-Induced Bubble Coalescence in Foaming Process
Viscoelastic simulations of deformation-induced bubble coalescence in forming process under isothermal condition were carried out. Multi mode PTT model was used in a simplified model for deformation of Polypropylene(PP) melt between bubbles in plane strain. 2-Dimentional Lagrangian FEM was adopted in the unsteady creeping flow simulation. The numerical results demonstrates that the thinnest part between neighboring gas bubbles is easily deformable and consequently coalescence occurs. Still more, creep recovery by elastic residual stress promotes the coalescence. The strain-hardening property is very effective to the coalescence prevention. Furthermore, the relaxation time distribution of polymer melts has significant influence on the behavior. Composition of the relaxation time that is a little longer than the elongational time makes a deformed bubble unstable and causes bubbles to coalesce. The numerical simulation could explain the deference in appearances of foamed sheets made of various PP.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reliability of Intrinsic Viscosity Estimated by Single Point Procedure at High Concentrations Crystal Growth and Viscosity Behaviors of Ammonium Alum Hydrate Solution with PVA in Shear Flow Thermal Expansion Behavior of Antiplasticized Polycarbonate Dielectric and Viscoelastic Behavior of Low-M Linear Polyisoprene Blended in Long Matrix Sakiadis Flow of Harris Fluids: a Series-Solution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1