超载海量MIMO系统中QAM信号检测的改进稀疏误差恢复方法

Yacine Meslem, A. Aïssa-El-Bey, M. Djeddou
{"title":"超载海量MIMO系统中QAM信号检测的改进稀疏误差恢复方法","authors":"Yacine Meslem, A. Aïssa-El-Bey, M. Djeddou","doi":"10.1109/SAM48682.2020.9104392","DOIUrl":null,"url":null,"abstract":"With a convenient concatenation of a convex relaxation-based detector and a simple greedy algorithm, we propose an improved Post Detection Sparse error Recovery (PDSR) approach for massive Multiple Input Multiple Output (m-MIMO) systems that, in particular, transmit QAM signals. The proposed PDSR approach can perform well in situations, where the classical one, either acts poorly or completely fails. We further propose an Alternating Direction Method of Multipliers (ADMM)-based solver for the convex detector, which is advan¬tageous in maintaining an affordable complexity to the overall proposed detection scheme. Numerical experiments show the efficiency of our approach, especially when applied to overloaded m-MIMO systems.","PeriodicalId":6753,"journal":{"name":"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)","volume":"23 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved sparse error recovery approach for detecting QAM signals in overloaded massive MIMO systems\",\"authors\":\"Yacine Meslem, A. Aïssa-El-Bey, M. Djeddou\",\"doi\":\"10.1109/SAM48682.2020.9104392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With a convenient concatenation of a convex relaxation-based detector and a simple greedy algorithm, we propose an improved Post Detection Sparse error Recovery (PDSR) approach for massive Multiple Input Multiple Output (m-MIMO) systems that, in particular, transmit QAM signals. The proposed PDSR approach can perform well in situations, where the classical one, either acts poorly or completely fails. We further propose an Alternating Direction Method of Multipliers (ADMM)-based solver for the convex detector, which is advan¬tageous in maintaining an affordable complexity to the overall proposed detection scheme. Numerical experiments show the efficiency of our approach, especially when applied to overloaded m-MIMO systems.\",\"PeriodicalId\":6753,\"journal\":{\"name\":\"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)\",\"volume\":\"23 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAM48682.2020.9104392\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM48682.2020.9104392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用基于凸松弛的检测器和简单贪婪算法的方便连接,我们提出了一种改进的后检测稀疏误差恢复(PDSR)方法,用于大规模多输入多输出(m-MIMO)系统,特别是传输QAM信号。提出的PDSR方法可以在经典方法表现不佳或完全失败的情况下表现良好。我们进一步提出了一种基于交替方向乘法器(ADMM)的凸检测器求解器,它有利于保持所提出的整体检测方案的可承受的复杂性。数值实验证明了该方法的有效性,尤其适用于超载m-MIMO系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improved sparse error recovery approach for detecting QAM signals in overloaded massive MIMO systems
With a convenient concatenation of a convex relaxation-based detector and a simple greedy algorithm, we propose an improved Post Detection Sparse error Recovery (PDSR) approach for massive Multiple Input Multiple Output (m-MIMO) systems that, in particular, transmit QAM signals. The proposed PDSR approach can perform well in situations, where the classical one, either acts poorly or completely fails. We further propose an Alternating Direction Method of Multipliers (ADMM)-based solver for the convex detector, which is advan¬tageous in maintaining an affordable complexity to the overall proposed detection scheme. Numerical experiments show the efficiency of our approach, especially when applied to overloaded m-MIMO systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GPU-accelerated parallel optimization for sparse regularization Efficient Beamforming Training and Channel Estimation for mmWave MIMO-OFDM Systems Online Robust Reduced-Rank Regression Block Sparsity Based Chirp Transform for Modeling Marine Mammal Whistle Calls Deterministic Coherence-Based Performance Guarantee for Noisy Sparse Subspace Clustering using Greedy Neighbor Selection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1