微半球形谐振器的晶圆级制造工艺

Yan Shi, X. Xi, Yulie Wu, Wei Li, Kun Lu, Z. Hou, Xuezhong Wu, D. Xiao
{"title":"微半球形谐振器的晶圆级制造工艺","authors":"Yan Shi, X. Xi, Yulie Wu, Wei Li, Kun Lu, Z. Hou, Xuezhong Wu, D. Xiao","doi":"10.1109/TRANSDUCERS.2019.8808230","DOIUrl":null,"url":null,"abstract":"This paper reports a wafer-level fabrication process for micro hemispherical resonators. Three-dimensional (3-D) structures are formed by high-temperature glassblowing individually to further enhance the structural symmetry. And then these structures are aligned and mounted on a 4-inch jig wafer, following processes including ultrafast laser ablation, metallization and bonding to electrode wafer are accomplished on wafer level. 3-D fused silica resonators with extremely symmetry, easy-operation and compatibility to MEMS procedure are simultaneously realized in this process. Devices with capacitive gap ≈15µm and alignment error below 35 µm are realized. Finally, these devices are characterized through capacitive measurement in vacuum, with n=2 wineglass mode ranging from 8.9 kHz to 9.7 kHz and quality factors between 47,073 to 55,026. The process is promising for the manufacturing of high-performance MEMS devices such as micro hemispherical resonator gyroscopes (µHRG).","PeriodicalId":6672,"journal":{"name":"2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII)","volume":"175 1","pages":"1670-1673"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Wafer-Level Fabrication Process for Micro Hemispherical Resonators\",\"authors\":\"Yan Shi, X. Xi, Yulie Wu, Wei Li, Kun Lu, Z. Hou, Xuezhong Wu, D. Xiao\",\"doi\":\"10.1109/TRANSDUCERS.2019.8808230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reports a wafer-level fabrication process for micro hemispherical resonators. Three-dimensional (3-D) structures are formed by high-temperature glassblowing individually to further enhance the structural symmetry. And then these structures are aligned and mounted on a 4-inch jig wafer, following processes including ultrafast laser ablation, metallization and bonding to electrode wafer are accomplished on wafer level. 3-D fused silica resonators with extremely symmetry, easy-operation and compatibility to MEMS procedure are simultaneously realized in this process. Devices with capacitive gap ≈15µm and alignment error below 35 µm are realized. Finally, these devices are characterized through capacitive measurement in vacuum, with n=2 wineglass mode ranging from 8.9 kHz to 9.7 kHz and quality factors between 47,073 to 55,026. The process is promising for the manufacturing of high-performance MEMS devices such as micro hemispherical resonator gyroscopes (µHRG).\",\"PeriodicalId\":6672,\"journal\":{\"name\":\"2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII)\",\"volume\":\"175 1\",\"pages\":\"1670-1673\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TRANSDUCERS.2019.8808230\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TRANSDUCERS.2019.8808230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文报道了一种微型半球形谐振器的晶圆级制造工艺。通过高温吹制玻璃形成三维结构,进一步增强了结构的对称性。然后将这些结构对准并安装在4英寸的夹具晶圆上,在晶圆级上完成超快激光烧蚀、金属化和与电极晶圆的粘合等工艺。同时实现了具有极高对称性、易操作、兼容MEMS工艺的三维熔融硅谐振器。实现了电容间隙≈15µm,对准误差小于35µm的器件。最后,通过真空电容测量对这些器件进行表征,n=2葡萄酒杯模式范围为8.9 kHz至9.7 kHz,质量因子在47,073至55,026之间。该工艺有望用于制造高性能MEMS器件,如微半球形谐振陀螺仪(µHRG)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Wafer-Level Fabrication Process for Micro Hemispherical Resonators
This paper reports a wafer-level fabrication process for micro hemispherical resonators. Three-dimensional (3-D) structures are formed by high-temperature glassblowing individually to further enhance the structural symmetry. And then these structures are aligned and mounted on a 4-inch jig wafer, following processes including ultrafast laser ablation, metallization and bonding to electrode wafer are accomplished on wafer level. 3-D fused silica resonators with extremely symmetry, easy-operation and compatibility to MEMS procedure are simultaneously realized in this process. Devices with capacitive gap ≈15µm and alignment error below 35 µm are realized. Finally, these devices are characterized through capacitive measurement in vacuum, with n=2 wineglass mode ranging from 8.9 kHz to 9.7 kHz and quality factors between 47,073 to 55,026. The process is promising for the manufacturing of high-performance MEMS devices such as micro hemispherical resonator gyroscopes (µHRG).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Batch Fabrication of Multilayer Polymer Cantilevers with Integrated Hard Tips for High-Speed Atomic Force Microscopy Engineering Tunable Strain Fields in Suspended Graphene by Microelectromechanical Systems Gan Current Transducers for Harsh Environments Harnessing Poisson Effect to Realize Tunable Tunneling Nanogap Electrodes on PDMS Substrates for Strain Sensing Self-Powered, Ultra-Reliable Hydrogen Sensor Exploiting Chemomechanical Nano-Transducer and Solar-Cell
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1