存储器件先进金属化的电迁移限制可靠性

Kyung-Tae Jang, Yong-Jin Park, Min-Woo Jeong, Seung-Min Lim, Han-Wool Ycon, Ju-Young Cho, Jin-Sub Shin, B. Woo, J. Bae, Yuchul Hwang, Young‐Chang Joo
{"title":"存储器件先进金属化的电迁移限制可靠性","authors":"Kyung-Tae Jang, Yong-Jin Park, Min-Woo Jeong, Seung-Min Lim, Han-Wool Ycon, Ju-Young Cho, Jin-Sub Shin, B. Woo, J. Bae, Yuchul Hwang, Young‐Chang Joo","doi":"10.1109/IITC-MAM.2015.7325650","DOIUrl":null,"url":null,"abstract":"As the design rule for memory devices shrinks, the reliability issue of electromigration (EM) is emerged due 10 the increase of high current density, therefore, the reliability for memory devices can be limited by EM failure of metal lines (Al. Cu. W). But EM reliability with respect to structures of interconnects is still underestimated even though EM behavior for each material has been reported for decades. Therefore, we investigated the kinetics of EM in various metal line and via in memory devices under direct current (DC) stressing because failure of metal interconnects depends not only on metal materials but also on structures of interconnects. Under EM tests, mean time failure of Al with W via was shorter than that of Cu with W via. These results came from abrupt failure behavior due to void nucleation and growth at Al with W via and gradual failure behavior at Cu with W via due to void generation and growth as well as conduction in Ta/TaN. Additionally. Cu with W via showed different behavior compared to Cu with Cu via. It can be explained that the joule heating between W and Cu interface caused lateral void expansion and resistance increases rapidly. And it was observed that W line had the longest lifetime of EM failure but the high resistivity of W should be considered for memory chip design. As the results, we conclude that Al has the weakest reliable property for EM reliability among Al. W and Cu metal lines and W via can affect the degradation of EM reliability. These results mean that reliability of Al and W interconnects beyond nanometer-scale should be improved to guarantee reliability in memory chip. This study could provide the guideline for the optimal materials for interconnects in highly-reliable memory chips.","PeriodicalId":6514,"journal":{"name":"2015 IEEE International Interconnect Technology Conference and 2015 IEEE Materials for Advanced Metallization Conference (IITC/MAM)","volume":"11 1","pages":"155-158"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Electromigration-limited reliability of advanced metallization for memory devices\",\"authors\":\"Kyung-Tae Jang, Yong-Jin Park, Min-Woo Jeong, Seung-Min Lim, Han-Wool Ycon, Ju-Young Cho, Jin-Sub Shin, B. Woo, J. Bae, Yuchul Hwang, Young‐Chang Joo\",\"doi\":\"10.1109/IITC-MAM.2015.7325650\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the design rule for memory devices shrinks, the reliability issue of electromigration (EM) is emerged due 10 the increase of high current density, therefore, the reliability for memory devices can be limited by EM failure of metal lines (Al. Cu. W). But EM reliability with respect to structures of interconnects is still underestimated even though EM behavior for each material has been reported for decades. Therefore, we investigated the kinetics of EM in various metal line and via in memory devices under direct current (DC) stressing because failure of metal interconnects depends not only on metal materials but also on structures of interconnects. Under EM tests, mean time failure of Al with W via was shorter than that of Cu with W via. These results came from abrupt failure behavior due to void nucleation and growth at Al with W via and gradual failure behavior at Cu with W via due to void generation and growth as well as conduction in Ta/TaN. Additionally. Cu with W via showed different behavior compared to Cu with Cu via. It can be explained that the joule heating between W and Cu interface caused lateral void expansion and resistance increases rapidly. And it was observed that W line had the longest lifetime of EM failure but the high resistivity of W should be considered for memory chip design. As the results, we conclude that Al has the weakest reliable property for EM reliability among Al. W and Cu metal lines and W via can affect the degradation of EM reliability. These results mean that reliability of Al and W interconnects beyond nanometer-scale should be improved to guarantee reliability in memory chip. This study could provide the guideline for the optimal materials for interconnects in highly-reliable memory chips.\",\"PeriodicalId\":6514,\"journal\":{\"name\":\"2015 IEEE International Interconnect Technology Conference and 2015 IEEE Materials for Advanced Metallization Conference (IITC/MAM)\",\"volume\":\"11 1\",\"pages\":\"155-158\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Interconnect Technology Conference and 2015 IEEE Materials for Advanced Metallization Conference (IITC/MAM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IITC-MAM.2015.7325650\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Interconnect Technology Conference and 2015 IEEE Materials for Advanced Metallization Conference (IITC/MAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IITC-MAM.2015.7325650","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

随着存储器件设计规则的缩小,由于高电流密度的增加,出现了电迁移(EM)的可靠性问题,因此,金属线(Al. Cu.)的EM失效可能限制存储器件的可靠性。但是互连结构的电磁可靠性仍然被低估,尽管每种材料的电磁行为已经报道了几十年。因此,我们研究了各种金属线和通孔存储器件在直流应力下的电磁动力学,因为金属互连的失效不仅取决于金属材料,而且取决于互连的结构。在EM测试中,Al与Cu的平均失效时间短于Al与Cu的平均失效时间。这些结果来自于Al与W通孔处由于空穴的形成和生长而导致的突然失效行为,以及Cu与W通孔中由于空穴的产生和生长以及在Ta/TaN中的传导而导致的逐渐失效行为。此外。带W孔的Cu与带Cu孔的Cu表现出不同的行为。这可以解释为W和Cu界面之间的焦耳加热导致横向空隙膨胀,阻力迅速增加。观察到W线的电磁失效寿命最长,但在设计存储芯片时应考虑到W的高电阻率。结果表明,Al金属线的电磁可靠性可靠性在Al、W和Cu金属线中是最弱的,W通孔会影响电磁可靠性的退化。这些结果表明,为了保证存储芯片的可靠性,需要提高铝钨互连在纳米级以上的可靠性。本研究可为高可靠性存储芯片互连材料的优选提供指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Electromigration-limited reliability of advanced metallization for memory devices
As the design rule for memory devices shrinks, the reliability issue of electromigration (EM) is emerged due 10 the increase of high current density, therefore, the reliability for memory devices can be limited by EM failure of metal lines (Al. Cu. W). But EM reliability with respect to structures of interconnects is still underestimated even though EM behavior for each material has been reported for decades. Therefore, we investigated the kinetics of EM in various metal line and via in memory devices under direct current (DC) stressing because failure of metal interconnects depends not only on metal materials but also on structures of interconnects. Under EM tests, mean time failure of Al with W via was shorter than that of Cu with W via. These results came from abrupt failure behavior due to void nucleation and growth at Al with W via and gradual failure behavior at Cu with W via due to void generation and growth as well as conduction in Ta/TaN. Additionally. Cu with W via showed different behavior compared to Cu with Cu via. It can be explained that the joule heating between W and Cu interface caused lateral void expansion and resistance increases rapidly. And it was observed that W line had the longest lifetime of EM failure but the high resistivity of W should be considered for memory chip design. As the results, we conclude that Al has the weakest reliable property for EM reliability among Al. W and Cu metal lines and W via can affect the degradation of EM reliability. These results mean that reliability of Al and W interconnects beyond nanometer-scale should be improved to guarantee reliability in memory chip. This study could provide the guideline for the optimal materials for interconnects in highly-reliable memory chips.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High-voltage monolithic 3D capacitors based on through-silicon-via technology Wafer level metallic bonding: Voiding mechanisms in copper layers A flexible top metal structure to improve ultra low-k reliability Nanostructured material formation for beyond Si devices Ni silicides formation: Use of Ge and Pt to study the diffusing species, lateral growth and relaxation mechanisms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1