投资全球股票市场,尤其关注中国股票

J. Guerard, Shijie Deng, Robert A. Gillam, H. Markowitz, Ganlin Xu, Ziwei Wang
{"title":"投资全球股票市场,尤其关注中国股票","authors":"J. Guerard, Shijie Deng, Robert A. Gillam, H. Markowitz, Ganlin Xu, Ziwei Wang","doi":"10.2139/SSRN.2744304","DOIUrl":null,"url":null,"abstract":"In this analysis of the risk and return of stocks in global markets, we build several models of stock selection and create optimized portfolios to outperform a global benchmark. We apply several applications of robust regression techniques in producing stock selection models and several Markowitz-based optimization techniques in portfolio construction in various global stock universes. We test separate Japanese and Chinese stock selection models because they are large markets, with large global benchmark weights or are frequently in the news. We find that (1) that robust regression applications are appropriate for modeling stock returns in global markets; and (2) mean-variance techniques continue to produce portfolios capable of generating excess returns above transactions costs; and (3) our models pass data mining tests such that the models produce statistically significant asset selection. We estimate expected return models in a global equity markets using a given stock selection model and generate statistically significant active returns from various portfolio construction techniques.","PeriodicalId":11800,"journal":{"name":"ERN: Stock Market Risk (Topic)","volume":"221 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Investing in Global Equity Markets with Particular Emphasis on Chinese Stocks\",\"authors\":\"J. Guerard, Shijie Deng, Robert A. Gillam, H. Markowitz, Ganlin Xu, Ziwei Wang\",\"doi\":\"10.2139/SSRN.2744304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this analysis of the risk and return of stocks in global markets, we build several models of stock selection and create optimized portfolios to outperform a global benchmark. We apply several applications of robust regression techniques in producing stock selection models and several Markowitz-based optimization techniques in portfolio construction in various global stock universes. We test separate Japanese and Chinese stock selection models because they are large markets, with large global benchmark weights or are frequently in the news. We find that (1) that robust regression applications are appropriate for modeling stock returns in global markets; and (2) mean-variance techniques continue to produce portfolios capable of generating excess returns above transactions costs; and (3) our models pass data mining tests such that the models produce statistically significant asset selection. We estimate expected return models in a global equity markets using a given stock selection model and generate statistically significant active returns from various portfolio construction techniques.\",\"PeriodicalId\":11800,\"journal\":{\"name\":\"ERN: Stock Market Risk (Topic)\",\"volume\":\"221 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Stock Market Risk (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/SSRN.2744304\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Stock Market Risk (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/SSRN.2744304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在分析全球市场股票的风险和收益时,我们建立了几个股票选择模型,并创建了优化的投资组合,以超越全球基准。我们将鲁棒回归技术应用于建立股票选择模型,并将几种基于马科维茨的优化技术应用于各种全球股票世界的投资组合构建。我们分别测试了日本和中国的选股模型,因为它们都是大市场,具有较大的全球基准权重,或者经常出现在新闻中。我们发现(1)稳健回归应用适合于全球市场的股票收益建模;(2)均值方差技术继续产生能够产生高于交易成本的超额回报的投资组合;(3)我们的模型通过了数据挖掘测试,使得模型产生了统计上显著的资产选择。我们使用给定的选股模型估计全球股票市场的预期收益模型,并从各种投资组合构建技术中产生统计上显著的积极收益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investing in Global Equity Markets with Particular Emphasis on Chinese Stocks
In this analysis of the risk and return of stocks in global markets, we build several models of stock selection and create optimized portfolios to outperform a global benchmark. We apply several applications of robust regression techniques in producing stock selection models and several Markowitz-based optimization techniques in portfolio construction in various global stock universes. We test separate Japanese and Chinese stock selection models because they are large markets, with large global benchmark weights or are frequently in the news. We find that (1) that robust regression applications are appropriate for modeling stock returns in global markets; and (2) mean-variance techniques continue to produce portfolios capable of generating excess returns above transactions costs; and (3) our models pass data mining tests such that the models produce statistically significant asset selection. We estimate expected return models in a global equity markets using a given stock selection model and generate statistically significant active returns from various portfolio construction techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Risk-Return Tradeoff Among Equity Factors Predictive Regressions under Arbitrary Persistence and Stock Return Predictability News and Trading After Hours High-Frequency Arbitrage and Market Illiquidity President’s Confidence and the Stock Market Performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1