熵最大化的新生命周期分布:属性和应用

IF 0.7 3区 工程技术 Q4 ENGINEERING, INDUSTRIAL Probability in the Engineering and Informational Sciences Pub Date : 2023-02-28 DOI:10.1017/s0269964823000062
Ali Khosravi Tanak, Marziyeh Najafi, G. M. Mohtashami Borzadaran
{"title":"熵最大化的新生命周期分布:属性和应用","authors":"Ali Khosravi Tanak, Marziyeh Najafi, G. M. Mohtashami Borzadaran","doi":"10.1017/s0269964823000062","DOIUrl":null,"url":null,"abstract":"\n The principle of maximum entropy is a well-known approach to produce a model for data-generating distributions. In this approach, if partial knowledge about the distribution is available in terms of a set of information constraints, then the model that maximizes entropy under these constraints is used for the inference. In this paper, we propose a new three-parameter lifetime distribution using the maximum entropy principle under the constraints on the mean and a general index. We then present some statistical properties of the new distribution, including hazard rate function, quantile function, moments, characterization, and stochastic ordering. We use the maximum likelihood estimation technique to estimate the model parameters. A Monte Carlo study is carried out to evaluate the performance of the estimation method. In order to illustrate the usefulness of the proposed model, we fit the model to three real data sets and compare its relative performance with respect to the beta generalized Weibull family.","PeriodicalId":54582,"journal":{"name":"Probability in the Engineering and Informational Sciences","volume":"106 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A new lifetime distribution by maximizing entropy: properties and applications\",\"authors\":\"Ali Khosravi Tanak, Marziyeh Najafi, G. M. Mohtashami Borzadaran\",\"doi\":\"10.1017/s0269964823000062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The principle of maximum entropy is a well-known approach to produce a model for data-generating distributions. In this approach, if partial knowledge about the distribution is available in terms of a set of information constraints, then the model that maximizes entropy under these constraints is used for the inference. In this paper, we propose a new three-parameter lifetime distribution using the maximum entropy principle under the constraints on the mean and a general index. We then present some statistical properties of the new distribution, including hazard rate function, quantile function, moments, characterization, and stochastic ordering. We use the maximum likelihood estimation technique to estimate the model parameters. A Monte Carlo study is carried out to evaluate the performance of the estimation method. In order to illustrate the usefulness of the proposed model, we fit the model to three real data sets and compare its relative performance with respect to the beta generalized Weibull family.\",\"PeriodicalId\":54582,\"journal\":{\"name\":\"Probability in the Engineering and Informational Sciences\",\"volume\":\"106 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Probability in the Engineering and Informational Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1017/s0269964823000062\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability in the Engineering and Informational Sciences","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/s0269964823000062","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 1

摘要

最大熵原理是一种众所周知的用于生成数据分布模型的方法。在这种方法中,如果根据一组信息约束可以获得关于分布的部分知识,则使用在这些约束下熵最大化的模型进行推理。本文利用最大熵原理,在均值约束和一般指标约束下,提出了一种新的三参数寿命分布。然后,我们给出了新分布的一些统计性质,包括危险率函数、分位数函数、矩、表征和随机排序。我们使用极大似然估计技术来估计模型参数。用蒙特卡罗方法对估计方法的性能进行了评价。为了说明所提出模型的有效性,我们将模型拟合到三个真实数据集,并将其相对于β广义威布尔族的性能进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A new lifetime distribution by maximizing entropy: properties and applications
The principle of maximum entropy is a well-known approach to produce a model for data-generating distributions. In this approach, if partial knowledge about the distribution is available in terms of a set of information constraints, then the model that maximizes entropy under these constraints is used for the inference. In this paper, we propose a new three-parameter lifetime distribution using the maximum entropy principle under the constraints on the mean and a general index. We then present some statistical properties of the new distribution, including hazard rate function, quantile function, moments, characterization, and stochastic ordering. We use the maximum likelihood estimation technique to estimate the model parameters. A Monte Carlo study is carried out to evaluate the performance of the estimation method. In order to illustrate the usefulness of the proposed model, we fit the model to three real data sets and compare its relative performance with respect to the beta generalized Weibull family.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
18.20%
发文量
45
审稿时长
>12 weeks
期刊介绍: The primary focus of the journal is on stochastic modelling in the physical and engineering sciences, with particular emphasis on queueing theory, reliability theory, inventory theory, simulation, mathematical finance and probabilistic networks and graphs. Papers on analytic properties and related disciplines are also considered, as well as more general papers on applied and computational probability, if appropriate. Readers include academics working in statistics, operations research, computer science, engineering, management science and physical sciences as well as industrial practitioners engaged in telecommunications, computer science, financial engineering, operations research and management science.
期刊最新文献
On the probability of a Pareto record Orderings of extremes among dependent extended Weibull random variables Discounted cost exponential semi-Markov decision processes with unbounded transition rates: a service rate control problem with impatient customers Discounted densities of overshoot and undershoot for Lévy processes with applications in finance Some properties of convex and increasing convex orders under Archimedean copula
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1