M. Sibero, Adella Maulina Savitri, E. H. Frederick, Sri Sedjati
{"title":"黑毛小霉MTGK.31发酵黑子草代谢物变化及抗氧化活性研究","authors":"M. Sibero, Adella Maulina Savitri, E. H. Frederick, Sri Sedjati","doi":"10.15578/squalen.727","DOIUrl":null,"url":null,"abstract":"Gracilaria verrucosa is a red seaweed that has been widely utilized in the food andpharmaceutical industries due to its biological properties. The utilization of biologicalagents in obtaining certain bioactive compounds would confront unavoidable issues,particularly its bioactive sustainability. Hence, microbial fermentation has been reported as a practical approach to maintaining bioactive production and boosting its properties. Our study aimed to evaluate the potential of marine yeast Aureobasidium melanogenum MTGK.31 as a fermenting agent for G. verrucosa and characterize the seaweed metabolite profile and antioxidant activity after fermentation. The seaweed was fermented using A. melanogenum MTGK.31 in a medium consisting of yeast extract, peptone, and glucose. The fermentation was done for 24, 48, and 72 hours. Total plate count and pH were measured after each fermentation period. The primary and secondary metabolites of G. verrucosa in each fermentation were observed. Antioxidant assay using the 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) method was conducted, followed by total phenolic content using the Folin-Ciocalteu method. It was highlighted that yeast colony increased during the fermentation, while the pH level was decreasing. We found that the fermentation not only boosted some elements in primary metabolites, but also increased G. verrucosa bioactive groups. After 72 hours of fermentation, the G. verrucosa percent radical scavenging activity (%RSA) increased more than two times compared to the fresh G. verrucosa with a %RSA value of 16.09±6.57. Nevertheless, the highest total phenolic content of 5.62±0.00028 mg GAE/g extract was shown by G. verrucosa after 48 hours of fermentation.","PeriodicalId":21935,"journal":{"name":"Squalen Bulletin of Marine and Fisheries Postharvest and Biotechnology","volume":"122 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metabolites Alteration and Antioxidant Activity of Gracilaria verrucosa After Fermentation Using Aureobasidium melanogenum MTGK.31\",\"authors\":\"M. Sibero, Adella Maulina Savitri, E. H. Frederick, Sri Sedjati\",\"doi\":\"10.15578/squalen.727\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gracilaria verrucosa is a red seaweed that has been widely utilized in the food andpharmaceutical industries due to its biological properties. The utilization of biologicalagents in obtaining certain bioactive compounds would confront unavoidable issues,particularly its bioactive sustainability. Hence, microbial fermentation has been reported as a practical approach to maintaining bioactive production and boosting its properties. Our study aimed to evaluate the potential of marine yeast Aureobasidium melanogenum MTGK.31 as a fermenting agent for G. verrucosa and characterize the seaweed metabolite profile and antioxidant activity after fermentation. The seaweed was fermented using A. melanogenum MTGK.31 in a medium consisting of yeast extract, peptone, and glucose. The fermentation was done for 24, 48, and 72 hours. Total plate count and pH were measured after each fermentation period. The primary and secondary metabolites of G. verrucosa in each fermentation were observed. Antioxidant assay using the 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) method was conducted, followed by total phenolic content using the Folin-Ciocalteu method. It was highlighted that yeast colony increased during the fermentation, while the pH level was decreasing. We found that the fermentation not only boosted some elements in primary metabolites, but also increased G. verrucosa bioactive groups. After 72 hours of fermentation, the G. verrucosa percent radical scavenging activity (%RSA) increased more than two times compared to the fresh G. verrucosa with a %RSA value of 16.09±6.57. Nevertheless, the highest total phenolic content of 5.62±0.00028 mg GAE/g extract was shown by G. verrucosa after 48 hours of fermentation.\",\"PeriodicalId\":21935,\"journal\":{\"name\":\"Squalen Bulletin of Marine and Fisheries Postharvest and Biotechnology\",\"volume\":\"122 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Squalen Bulletin of Marine and Fisheries Postharvest and Biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15578/squalen.727\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Squalen Bulletin of Marine and Fisheries Postharvest and Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15578/squalen.727","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
Metabolites Alteration and Antioxidant Activity of Gracilaria verrucosa After Fermentation Using Aureobasidium melanogenum MTGK.31
Gracilaria verrucosa is a red seaweed that has been widely utilized in the food andpharmaceutical industries due to its biological properties. The utilization of biologicalagents in obtaining certain bioactive compounds would confront unavoidable issues,particularly its bioactive sustainability. Hence, microbial fermentation has been reported as a practical approach to maintaining bioactive production and boosting its properties. Our study aimed to evaluate the potential of marine yeast Aureobasidium melanogenum MTGK.31 as a fermenting agent for G. verrucosa and characterize the seaweed metabolite profile and antioxidant activity after fermentation. The seaweed was fermented using A. melanogenum MTGK.31 in a medium consisting of yeast extract, peptone, and glucose. The fermentation was done for 24, 48, and 72 hours. Total plate count and pH were measured after each fermentation period. The primary and secondary metabolites of G. verrucosa in each fermentation were observed. Antioxidant assay using the 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) method was conducted, followed by total phenolic content using the Folin-Ciocalteu method. It was highlighted that yeast colony increased during the fermentation, while the pH level was decreasing. We found that the fermentation not only boosted some elements in primary metabolites, but also increased G. verrucosa bioactive groups. After 72 hours of fermentation, the G. verrucosa percent radical scavenging activity (%RSA) increased more than two times compared to the fresh G. verrucosa with a %RSA value of 16.09±6.57. Nevertheless, the highest total phenolic content of 5.62±0.00028 mg GAE/g extract was shown by G. verrucosa after 48 hours of fermentation.