L. Wen, F. Yamashita, B. Tang, K. Croes, S. Tahara, Keiichi Shimoda, Takeru Maeshiro, E. Nishimura, F. Lazzarino, I. Ciofi, J. Bommels, Z. Tokei
{"title":"用于高级互连的直接蚀刻Cu表征","authors":"L. Wen, F. Yamashita, B. Tang, K. Croes, S. Tahara, Keiichi Shimoda, Takeru Maeshiro, E. Nishimura, F. Lazzarino, I. Ciofi, J. Bommels, Z. Tokei","doi":"10.1109/IITC-MAM.2015.7325613","DOIUrl":null,"url":null,"abstract":"Cu wires patterning by direct etch methods is investigated at 300mm wafer level. Cross-sectional sidewall profiles with tapering angles around 74.5° are obtained with a mid-line width of 44 nm, which paves the way to further scaling of this technique. Lower resistivity is demonstrated with respect to conventional Cu damascene process, with low leakage current between adjacent Cu lines. An in-situ 10nm SiN cap is deposited as a passivation to enable electrical and reliability tests. The electromigration (EM) characterization shows promising reliability performance of the direct etched Cu wires.","PeriodicalId":6514,"journal":{"name":"2015 IEEE International Interconnect Technology Conference and 2015 IEEE Materials for Advanced Metallization Conference (IITC/MAM)","volume":"28 1","pages":"173-176"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Direct etched Cu characterization for advanced interconnects\",\"authors\":\"L. Wen, F. Yamashita, B. Tang, K. Croes, S. Tahara, Keiichi Shimoda, Takeru Maeshiro, E. Nishimura, F. Lazzarino, I. Ciofi, J. Bommels, Z. Tokei\",\"doi\":\"10.1109/IITC-MAM.2015.7325613\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cu wires patterning by direct etch methods is investigated at 300mm wafer level. Cross-sectional sidewall profiles with tapering angles around 74.5° are obtained with a mid-line width of 44 nm, which paves the way to further scaling of this technique. Lower resistivity is demonstrated with respect to conventional Cu damascene process, with low leakage current between adjacent Cu lines. An in-situ 10nm SiN cap is deposited as a passivation to enable electrical and reliability tests. The electromigration (EM) characterization shows promising reliability performance of the direct etched Cu wires.\",\"PeriodicalId\":6514,\"journal\":{\"name\":\"2015 IEEE International Interconnect Technology Conference and 2015 IEEE Materials for Advanced Metallization Conference (IITC/MAM)\",\"volume\":\"28 1\",\"pages\":\"173-176\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Interconnect Technology Conference and 2015 IEEE Materials for Advanced Metallization Conference (IITC/MAM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IITC-MAM.2015.7325613\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Interconnect Technology Conference and 2015 IEEE Materials for Advanced Metallization Conference (IITC/MAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IITC-MAM.2015.7325613","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Direct etched Cu characterization for advanced interconnects
Cu wires patterning by direct etch methods is investigated at 300mm wafer level. Cross-sectional sidewall profiles with tapering angles around 74.5° are obtained with a mid-line width of 44 nm, which paves the way to further scaling of this technique. Lower resistivity is demonstrated with respect to conventional Cu damascene process, with low leakage current between adjacent Cu lines. An in-situ 10nm SiN cap is deposited as a passivation to enable electrical and reliability tests. The electromigration (EM) characterization shows promising reliability performance of the direct etched Cu wires.