网站和产品推荐的大数据框架

E. Ogbuju, Ejiofor, O. Okonkwo, M. Onyesolu
{"title":"网站和产品推荐的大数据框架","authors":"E. Ogbuju, Ejiofor, O. Okonkwo, M. Onyesolu","doi":"10.18488/JOURNAL.104.2021.61.1.14","DOIUrl":null,"url":null,"abstract":"The improvement of the IT infrastructure in an e-commerce platform is essential for both customer satisfaction and increased revenue. While different techniques had been applied towards achieving this, there is still need to engage customer feedbacks in providing an all-inclusive solution to the recommendation systems available in the e-commerce domain. The motivation is on making a more exact recommendation with the traditional collaborative system by mining the feedbacks and uncovering their sentiments using big data analytic systems. This paper describes the design of a big data framework that may be used for shopping sites recommendations and another that may be used for product(s) recommendations to prospecting customers. The use of the cross industry standard process for data mining is applied in proposing the new system. Although the techniques of Hadoop/MongoDB tools are described within the proposed designs, it concentrates mainly on the architecture and algorithm of the system in a holistic approach to enable the platform providers, e-commerce merchants and practitioners find a guided implementation of it using any tool of choice. Contribution/Originality: This study documents the use of the cross-industry standard process for data mining methodology to design big data frameworks that implement the application of sentiment analysis of review texts as preprocessed input into the collaborative filtering algorithm for both sites and product recommendation.","PeriodicalId":33057,"journal":{"name":"JOINS Journal of Information System","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Big Data Frameworks for Sites and Products Recommendation\",\"authors\":\"E. Ogbuju, Ejiofor, O. Okonkwo, M. Onyesolu\",\"doi\":\"10.18488/JOURNAL.104.2021.61.1.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The improvement of the IT infrastructure in an e-commerce platform is essential for both customer satisfaction and increased revenue. While different techniques had been applied towards achieving this, there is still need to engage customer feedbacks in providing an all-inclusive solution to the recommendation systems available in the e-commerce domain. The motivation is on making a more exact recommendation with the traditional collaborative system by mining the feedbacks and uncovering their sentiments using big data analytic systems. This paper describes the design of a big data framework that may be used for shopping sites recommendations and another that may be used for product(s) recommendations to prospecting customers. The use of the cross industry standard process for data mining is applied in proposing the new system. Although the techniques of Hadoop/MongoDB tools are described within the proposed designs, it concentrates mainly on the architecture and algorithm of the system in a holistic approach to enable the platform providers, e-commerce merchants and practitioners find a guided implementation of it using any tool of choice. Contribution/Originality: This study documents the use of the cross-industry standard process for data mining methodology to design big data frameworks that implement the application of sentiment analysis of review texts as preprocessed input into the collaborative filtering algorithm for both sites and product recommendation.\",\"PeriodicalId\":33057,\"journal\":{\"name\":\"JOINS Journal of Information System\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JOINS Journal of Information System\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18488/JOURNAL.104.2021.61.1.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOINS Journal of Information System","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18488/JOURNAL.104.2021.61.1.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

电子商务平台中IT基础设施的改进对于客户满意度和增加收入都是至关重要的。虽然已经应用了不同的技术来实现这一目标,但在为电子商务领域中可用的推荐系统提供全面的解决方案时,仍然需要吸引客户反馈。其动机是利用传统的协作系统,通过挖掘反馈并利用大数据分析系统揭示他们的情绪,从而做出更准确的推荐。本文描述了一个大数据框架的设计,该框架可用于购物网站推荐,另一个可用于向潜在客户推荐产品。在提出新系统时,采用了跨行业数据挖掘标准流程。虽然在提议的设计中描述了Hadoop/MongoDB工具的技术,但它主要集中在系统的架构和算法上,以一种整体的方法,使平台提供商、电子商务商家和从业者能够使用任何选择的工具找到它的指导实现。贡献/独创性:本研究记录了使用跨行业标准流程的数据挖掘方法来设计大数据框架,这些框架实现了将评论文本的情感分析作为预处理输入到网站和产品推荐的协同过滤算法中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Big Data Frameworks for Sites and Products Recommendation
The improvement of the IT infrastructure in an e-commerce platform is essential for both customer satisfaction and increased revenue. While different techniques had been applied towards achieving this, there is still need to engage customer feedbacks in providing an all-inclusive solution to the recommendation systems available in the e-commerce domain. The motivation is on making a more exact recommendation with the traditional collaborative system by mining the feedbacks and uncovering their sentiments using big data analytic systems. This paper describes the design of a big data framework that may be used for shopping sites recommendations and another that may be used for product(s) recommendations to prospecting customers. The use of the cross industry standard process for data mining is applied in proposing the new system. Although the techniques of Hadoop/MongoDB tools are described within the proposed designs, it concentrates mainly on the architecture and algorithm of the system in a holistic approach to enable the platform providers, e-commerce merchants and practitioners find a guided implementation of it using any tool of choice. Contribution/Originality: This study documents the use of the cross-industry standard process for data mining methodology to design big data frameworks that implement the application of sentiment analysis of review texts as preprocessed input into the collaborative filtering algorithm for both sites and product recommendation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
9
审稿时长
5 weeks
期刊最新文献
DETEKSI WEBSITE PHISHING MENGGUNAKAN TEKNIK FILTER PADA MODEL MACHINE LEARNING PENGENALAN WAJAH UNTUK MEMPERCEPAT PROSES PEMILIHAN UMUM: STUDI KASUS IMPLEMENTASI METODE HOG DAN CNN PADA SISTEM EVOTING SISTEM PENDUKUNG KEPUTUSAN PEMILIHAN SUPPLIER PAKAIAN DENGAN METODE SIMPLE ADDITIVE WEIGHTING PADA TOKO HENHEN COLLECTION IMPLEMENTASI REACTJS PADA PEMBUATAN SISTEM INFORMASI DIGITAL PRINTING BERBASIS WEBSITE IMPLEMENTASI METODE SCRUM PADA PEMBUATAN FITUR USULAN DAN KLAIM KONVERSI APLIKASI XYZ
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1