利用控制白粉病抗性的Pm-0基因标记对南瓜和西葫芦采集样本进行分子筛选

Q3 Agricultural and Biological Sciences Ecological genetics Pub Date : 2023-08-16 DOI:10.17816/ecogen110988
F. A. Berensen, Tatiana M. Piskunova, S. V. Kuzmin, Andrey F. Moskalu, O. Antonova, A. Artemyeva
{"title":"利用控制白粉病抗性的Pm-0基因标记对南瓜和西葫芦采集样本进行分子筛选","authors":"F. A. Berensen, Tatiana M. Piskunova, S. V. Kuzmin, Andrey F. Moskalu, O. Antonova, A. Artemyeva","doi":"10.17816/ecogen110988","DOIUrl":null,"url":null,"abstract":"Powdery mildew (PM) is one of the most harmful diseases of cucurbits. Modern commercial varieties of squash Cucurbita pepo L. var. giraumonas Duch and patisson C. pepo var. melopepo L. received powdery mildew resistance genes from wild species. The Pm-0 resistance gene belongs to the linkage group 10; two CAPS markers were developed for its mapping [15]. The main intragenic marker NBS_S9_1495924/HaeIII is localized in the NBS-LRR region, the additional marker S9_1539675/MspI shows complete co-segregation with resistance to PM [15]. In the present study, these markers were used for molecular screening of an experimental set of squash and patisson samples (differ in resistance to powdery mildew) from the VIR gene bank collection and perspective breeding lines of the Krymsk Experiment Breeding Station branch of VIR. In total, 80 samples were investigated. Samples, carrying fragments of both CAPS markers (17) and fragments of only one marker (31) were found. Presence of two markers of the Pm-0 gene (NBS_S9_1495924/HaeIII и S9_1539675/MspI) has the strong correlation with resistance to PM (r = 0.837). \nFor three powdery mildew-resistant samples, which has demonstrated presence of both markers of the Pm-0 gene, additional analysis of individual plants was done. Resistant plants with Pm-0 gene markers were self-pollinated to create resistant lines. Thus, molecular screening allowed to preserve the valuable trait of resistance during maintaining of the squash collection samples.","PeriodicalId":11431,"journal":{"name":"Ecological genetics","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular screening of squash and patisson squash collection samples using markers of the Pm-0 gene, which controls resistance to powdery mildew\",\"authors\":\"F. A. Berensen, Tatiana M. Piskunova, S. V. Kuzmin, Andrey F. Moskalu, O. Antonova, A. Artemyeva\",\"doi\":\"10.17816/ecogen110988\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Powdery mildew (PM) is one of the most harmful diseases of cucurbits. Modern commercial varieties of squash Cucurbita pepo L. var. giraumonas Duch and patisson C. pepo var. melopepo L. received powdery mildew resistance genes from wild species. The Pm-0 resistance gene belongs to the linkage group 10; two CAPS markers were developed for its mapping [15]. The main intragenic marker NBS_S9_1495924/HaeIII is localized in the NBS-LRR region, the additional marker S9_1539675/MspI shows complete co-segregation with resistance to PM [15]. In the present study, these markers were used for molecular screening of an experimental set of squash and patisson samples (differ in resistance to powdery mildew) from the VIR gene bank collection and perspective breeding lines of the Krymsk Experiment Breeding Station branch of VIR. In total, 80 samples were investigated. Samples, carrying fragments of both CAPS markers (17) and fragments of only one marker (31) were found. Presence of two markers of the Pm-0 gene (NBS_S9_1495924/HaeIII и S9_1539675/MspI) has the strong correlation with resistance to PM (r = 0.837). \\nFor three powdery mildew-resistant samples, which has demonstrated presence of both markers of the Pm-0 gene, additional analysis of individual plants was done. Resistant plants with Pm-0 gene markers were self-pollinated to create resistant lines. Thus, molecular screening allowed to preserve the valuable trait of resistance during maintaining of the squash collection samples.\",\"PeriodicalId\":11431,\"journal\":{\"name\":\"Ecological genetics\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological genetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17816/ecogen110988\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological genetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17816/ecogen110988","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

摘要

白粉病是危害瓜类最严重的病害之一。现代商品南瓜品种Cucurbita pepo L. var. giraumonas Duch和patisson C. pepo var. melopepo L.从野生种获得了抗白粉病基因。Pm-0抗性基因属于连锁群10;两种CAPS标记被开发用于其定位[15]。主要基因内标记NBS_S9_1495924/HaeIII定位于NBS-LRR区域,附加标记S9_1539675/MspI与PM抗性完全共分离[15]。在本研究中,这些标记被用于从VIR基因库收集和VIR Krymsk实验育种站分支的观点育种系中筛选一组南瓜和南瓜实验样品(对白粉病的抗性不同)。总共调查了80个样本。有17份样本同时携带两种cap标记物的片段,31份样本仅携带一种标记物的片段。PM -0基因的两个标记(NBS_S9_1495924/HaeIII / S9_1539675/MspI)的存在与对PM的抗性有很强的相关性(r = 0.837)。对于三个抗白粉病的样品,已经证明存在Pm-0基因的两个标记,对单个植物进行了额外的分析。具有Pm-0基因标记的抗性植株通过自花授粉形成抗性品系。因此,分子筛选可以在南瓜收集样品的保存过程中保留有价值的抗性性状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Molecular screening of squash and patisson squash collection samples using markers of the Pm-0 gene, which controls resistance to powdery mildew
Powdery mildew (PM) is one of the most harmful diseases of cucurbits. Modern commercial varieties of squash Cucurbita pepo L. var. giraumonas Duch and patisson C. pepo var. melopepo L. received powdery mildew resistance genes from wild species. The Pm-0 resistance gene belongs to the linkage group 10; two CAPS markers were developed for its mapping [15]. The main intragenic marker NBS_S9_1495924/HaeIII is localized in the NBS-LRR region, the additional marker S9_1539675/MspI shows complete co-segregation with resistance to PM [15]. In the present study, these markers were used for molecular screening of an experimental set of squash and patisson samples (differ in resistance to powdery mildew) from the VIR gene bank collection and perspective breeding lines of the Krymsk Experiment Breeding Station branch of VIR. In total, 80 samples were investigated. Samples, carrying fragments of both CAPS markers (17) and fragments of only one marker (31) were found. Presence of two markers of the Pm-0 gene (NBS_S9_1495924/HaeIII и S9_1539675/MspI) has the strong correlation with resistance to PM (r = 0.837). For three powdery mildew-resistant samples, which has demonstrated presence of both markers of the Pm-0 gene, additional analysis of individual plants was done. Resistant plants with Pm-0 gene markers were self-pollinated to create resistant lines. Thus, molecular screening allowed to preserve the valuable trait of resistance during maintaining of the squash collection samples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ecological genetics
Ecological genetics Environmental Science-Ecology
CiteScore
0.90
自引率
0.00%
发文量
22
期刊介绍: The journal Ecological genetics is an international journal which accepts for consideration original manuscripts that reflect the results of field and experimental studies, and fundamental research of broad conceptual and/or comparative context corresponding to the profile of the Journal. Once a year, the editorial Board reviews and, if necessary, corrects the rules for authors and the journal rubrics.
期刊最新文献
CRISPR/Cas editing of a CPC gene in Arabidopsis thaliana Hairy roots biochemical characteristics of vegetable pea’s morphotype with modified leaf Erratum to “The strong base for using base editing in plants” (doi: 10.17816/ecogen567885) PCR-based genome walking methods (review) Ecological genetics. What is it? 20 years later
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1