用于持续给药的树状多肽

Mosa H. Alsehli, M. Gauthier
{"title":"用于持续给药的树状多肽","authors":"Mosa H. Alsehli, M. Gauthier","doi":"10.1557/OPL.2016.70","DOIUrl":null,"url":null,"abstract":"Polypeptides are receiving increasing attention as building blocks to create nanostructures for biomedical applications. The first goal of this investigation was to explore the influence of the reaction conditions in the synthesis of well-defined dendritic graft (arborescent) polypeptides from amine-terminated poly(γ-benzyl L-glutamate) (PBG) chains. The optimization was carried out in terms of the reaction temperature, solvent, reaction time, and mole ratio of reactants and coupling agents. Size exclusion chromatography served to evaluate the grafting reaction in terms of grafting yield (fraction of side chains coupled with the substrate) and coupling efficiency (fraction of coupling sites consumed on the substrate). The maximum grafting yield and coupling efficiency achieved were 67% and 74%, respectively. These arborescent PBG substrates were subsequently grafted with poly(ethylene oxide) segments forming a hydrophilic shell, to obtain water-dispersible unimolecular micelles useful as delivery vehicles for doxorubicin.","PeriodicalId":18884,"journal":{"name":"MRS Proceedings","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Arborescent Polypeptides for Sustained Drug Delivery\",\"authors\":\"Mosa H. Alsehli, M. Gauthier\",\"doi\":\"10.1557/OPL.2016.70\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Polypeptides are receiving increasing attention as building blocks to create nanostructures for biomedical applications. The first goal of this investigation was to explore the influence of the reaction conditions in the synthesis of well-defined dendritic graft (arborescent) polypeptides from amine-terminated poly(γ-benzyl L-glutamate) (PBG) chains. The optimization was carried out in terms of the reaction temperature, solvent, reaction time, and mole ratio of reactants and coupling agents. Size exclusion chromatography served to evaluate the grafting reaction in terms of grafting yield (fraction of side chains coupled with the substrate) and coupling efficiency (fraction of coupling sites consumed on the substrate). The maximum grafting yield and coupling efficiency achieved were 67% and 74%, respectively. These arborescent PBG substrates were subsequently grafted with poly(ethylene oxide) segments forming a hydrophilic shell, to obtain water-dispersible unimolecular micelles useful as delivery vehicles for doxorubicin.\",\"PeriodicalId\":18884,\"journal\":{\"name\":\"MRS Proceedings\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MRS Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1557/OPL.2016.70\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MRS Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1557/OPL.2016.70","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

多肽作为构建生物医学纳米结构的基石,正受到越来越多的关注。本研究的第一个目的是探索反应条件对氨基端聚(γ-苄基- l-谷氨酸)(PBG)链合成定义明确的树突状(树状)多肽的影响。对反应温度、溶剂、反应时间、反应物和偶联剂的摩尔比等因素进行了优化。尺寸排除色谱法用于评估接枝反应的接枝率(与底物偶联的侧链的比例)和偶联效率(在底物上消耗的偶联位点的比例)。最大接枝率和偶联效率分别为67%和74%。这些树状PBG底物随后接枝聚环氧乙烷片段,形成亲水外壳,以获得可水分散的单分子胶束,可作为阿霉素的递送载体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Arborescent Polypeptides for Sustained Drug Delivery
Polypeptides are receiving increasing attention as building blocks to create nanostructures for biomedical applications. The first goal of this investigation was to explore the influence of the reaction conditions in the synthesis of well-defined dendritic graft (arborescent) polypeptides from amine-terminated poly(γ-benzyl L-glutamate) (PBG) chains. The optimization was carried out in terms of the reaction temperature, solvent, reaction time, and mole ratio of reactants and coupling agents. Size exclusion chromatography served to evaluate the grafting reaction in terms of grafting yield (fraction of side chains coupled with the substrate) and coupling efficiency (fraction of coupling sites consumed on the substrate). The maximum grafting yield and coupling efficiency achieved were 67% and 74%, respectively. These arborescent PBG substrates were subsequently grafted with poly(ethylene oxide) segments forming a hydrophilic shell, to obtain water-dispersible unimolecular micelles useful as delivery vehicles for doxorubicin.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nucleation and dynamics of dislocations in mismatched heterostructures Ceramics at the Emergence of the Silk Road: A Case of Village Potters from Southeastern Kazakhstan during the Late Iron Age The Potential of Low Frequency EPR Spectroscopy in Studying Pottery Artifacts and Pigments. Characterization of Bistre Pigment Samples by FTIR, SERS, Py-GC/MS and XRF Dual-Beam Scanning Electron Microscope (SEM) and Focused Ion Beam (FIB): A Practical Method for Characterization of Small Cultural Heritage Objects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1