{"title":"在全局QCD分析中检验非微扰强子结构的动量依赖性","authors":"A. Courtoy, P. Nadolsky","doi":"10.1103/PHYSREVD.103.054029","DOIUrl":null,"url":null,"abstract":"We discuss strategies for comparisons of nonperturbative QCD predictions for parton distribution functions (PDFs) with high-energy experiments in the region of large partonic momentum fractions $x$. Analytic functional forms for PDFs cannot be uniquely determined solely based on discrete experimental measurements because of a mathematical property of mimicry of PDF parametrizations that we prove using a representation based on B\\'ezier curves. Predictions of nonperturbative QCD approaches for the $x$ dependence of PDFs instead should be cast in a form that enables decisive comparisons against experimental measurements. Predictions for effective power laws of $(1-x)$ dependence of PDFs may play this role. Expectations for PDFs in a proton based on quark counting rules are compared against the effective power laws of $(1-x)$ dependence satisfied by CT18 next-to-next-to-leading order parton distributions. We comment on implications for studies of PDFs in a pion, in particular on the comparison of nonperturbative approaches with phenomenological PDFs.","PeriodicalId":8457,"journal":{"name":"arXiv: High Energy Physics - Phenomenology","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Testing momentum dependence of the nonperturbative hadron structure in a global QCD analysis\",\"authors\":\"A. Courtoy, P. Nadolsky\",\"doi\":\"10.1103/PHYSREVD.103.054029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We discuss strategies for comparisons of nonperturbative QCD predictions for parton distribution functions (PDFs) with high-energy experiments in the region of large partonic momentum fractions $x$. Analytic functional forms for PDFs cannot be uniquely determined solely based on discrete experimental measurements because of a mathematical property of mimicry of PDF parametrizations that we prove using a representation based on B\\\\'ezier curves. Predictions of nonperturbative QCD approaches for the $x$ dependence of PDFs instead should be cast in a form that enables decisive comparisons against experimental measurements. Predictions for effective power laws of $(1-x)$ dependence of PDFs may play this role. Expectations for PDFs in a proton based on quark counting rules are compared against the effective power laws of $(1-x)$ dependence satisfied by CT18 next-to-next-to-leading order parton distributions. We comment on implications for studies of PDFs in a pion, in particular on the comparison of nonperturbative approaches with phenomenological PDFs.\",\"PeriodicalId\":8457,\"journal\":{\"name\":\"arXiv: High Energy Physics - Phenomenology\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: High Energy Physics - Phenomenology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/PHYSREVD.103.054029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: High Energy Physics - Phenomenology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVD.103.054029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Testing momentum dependence of the nonperturbative hadron structure in a global QCD analysis
We discuss strategies for comparisons of nonperturbative QCD predictions for parton distribution functions (PDFs) with high-energy experiments in the region of large partonic momentum fractions $x$. Analytic functional forms for PDFs cannot be uniquely determined solely based on discrete experimental measurements because of a mathematical property of mimicry of PDF parametrizations that we prove using a representation based on B\'ezier curves. Predictions of nonperturbative QCD approaches for the $x$ dependence of PDFs instead should be cast in a form that enables decisive comparisons against experimental measurements. Predictions for effective power laws of $(1-x)$ dependence of PDFs may play this role. Expectations for PDFs in a proton based on quark counting rules are compared against the effective power laws of $(1-x)$ dependence satisfied by CT18 next-to-next-to-leading order parton distributions. We comment on implications for studies of PDFs in a pion, in particular on the comparison of nonperturbative approaches with phenomenological PDFs.