视频运动的每一个可见点

Susanna Ricco, Carlo Tomasi
{"title":"视频运动的每一个可见点","authors":"Susanna Ricco, Carlo Tomasi","doi":"10.1109/ICCV.2013.306","DOIUrl":null,"url":null,"abstract":"Dense motion of image points over many video frames can provide important information about the world. However, occlusions and drift make it impossible to compute long motion paths by merely concatenating optical flow vectors between consecutive frames. Instead, we solve for entire paths directly, and flag the frames in which each is visible. As in previous work, we anchor each path to a unique pixel which guarantees an even spatial distribution of paths. Unlike earlier methods, we allow paths to be anchored in any frame. By explicitly requiring that at least one visible path passes within a small neighborhood of every pixel, we guarantee complete coverage of all visible points in all frames. We achieve state-of-the-art results on real sequences including both rigid and non-rigid motions with significant occlusions.","PeriodicalId":6351,"journal":{"name":"2013 IEEE International Conference on Computer Vision","volume":"179 1","pages":"2464-2471"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Video Motion for Every Visible Point\",\"authors\":\"Susanna Ricco, Carlo Tomasi\",\"doi\":\"10.1109/ICCV.2013.306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dense motion of image points over many video frames can provide important information about the world. However, occlusions and drift make it impossible to compute long motion paths by merely concatenating optical flow vectors between consecutive frames. Instead, we solve for entire paths directly, and flag the frames in which each is visible. As in previous work, we anchor each path to a unique pixel which guarantees an even spatial distribution of paths. Unlike earlier methods, we allow paths to be anchored in any frame. By explicitly requiring that at least one visible path passes within a small neighborhood of every pixel, we guarantee complete coverage of all visible points in all frames. We achieve state-of-the-art results on real sequences including both rigid and non-rigid motions with significant occlusions.\",\"PeriodicalId\":6351,\"journal\":{\"name\":\"2013 IEEE International Conference on Computer Vision\",\"volume\":\"179 1\",\"pages\":\"2464-2471\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2013.306\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2013.306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

图像点在许多视频帧上的密集运动可以提供关于世界的重要信息。然而,遮挡和漂移使得仅通过在连续帧之间连接光流矢量来计算长运动路径变得不可能。相反,我们直接求解整个路径,并标记每个路径可见的帧。在之前的工作中,我们将每条路径锚定到一个唯一的像素,以保证路径的均匀空间分布。与以前的方法不同,我们允许在任何框架中锚定路径。通过明确要求在每个像素的小邻域中至少有一条可见路径通过,我们保证在所有帧中完全覆盖所有可见点。我们在真实序列上取得了最先进的结果,包括具有显著遮挡的刚性和非刚性运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Video Motion for Every Visible Point
Dense motion of image points over many video frames can provide important information about the world. However, occlusions and drift make it impossible to compute long motion paths by merely concatenating optical flow vectors between consecutive frames. Instead, we solve for entire paths directly, and flag the frames in which each is visible. As in previous work, we anchor each path to a unique pixel which guarantees an even spatial distribution of paths. Unlike earlier methods, we allow paths to be anchored in any frame. By explicitly requiring that at least one visible path passes within a small neighborhood of every pixel, we guarantee complete coverage of all visible points in all frames. We achieve state-of-the-art results on real sequences including both rigid and non-rigid motions with significant occlusions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PixelTrack: A Fast Adaptive Algorithm for Tracking Non-rigid Objects A General Dense Image Matching Framework Combining Direct and Feature-Based Costs Latent Space Sparse Subspace Clustering Non-convex P-Norm Projection for Robust Sparsity Hierarchical Joint Max-Margin Learning of Mid and Top Level Representations for Visual Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1