Mehtap Tugrak Sakarya, H. I. Gül, C. Yamali, Parham Taslimi, Tuğba Taşkın Tok
{"title":"针对胆碱酯酶、α-葡萄糖苷酶和α-淀粉酶的苯磺酰胺基硫脲和噻唑烷酮衍生物的分子对接研究及其生物活性","authors":"Mehtap Tugrak Sakarya, H. I. Gül, C. Yamali, Parham Taslimi, Tuğba Taşkın Tok","doi":"10.18596/jotcsa.1111172","DOIUrl":null,"url":null,"abstract":"Alzheimer's disease (AD) and diabetes mellitus (DM) are related to abnormal changes in enzyme activity. While acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are the primary targets in the treatment of Alzheimer's disease (AD), α-glucosidase (α-Gly) and α-amylase (α-Amy) enzymes are known for diabetes mellitus (DM). Here, benzenesulfonamide-based thiourea and thiazolidinone derivatives such as AChE, BChE, α-Gly, and α-Amy inhibitors were reported. The results revealed that compounds 1d and 2c showed promising AChE and BChE inhibition effects. Compound 2a was the most potent inhibitor against α-glycosidase and α-amylase, respectively. Molecular docking studies indicated that the lead compounds' binding energy values and molecular interactions were better than that of tacrine and acarbose. The most bioactive compounds may be considered potent leads for further studies.","PeriodicalId":17299,"journal":{"name":"Journal of the Turkish Chemical Society Section A: Chemistry","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular docking studies and biological activities of benzenesulfonamide-based thiourea and thiazolidinone derivatives targeting cholinesterases, α-glucosidase, and α-amylase enzymes\",\"authors\":\"Mehtap Tugrak Sakarya, H. I. Gül, C. Yamali, Parham Taslimi, Tuğba Taşkın Tok\",\"doi\":\"10.18596/jotcsa.1111172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Alzheimer's disease (AD) and diabetes mellitus (DM) are related to abnormal changes in enzyme activity. While acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are the primary targets in the treatment of Alzheimer's disease (AD), α-glucosidase (α-Gly) and α-amylase (α-Amy) enzymes are known for diabetes mellitus (DM). Here, benzenesulfonamide-based thiourea and thiazolidinone derivatives such as AChE, BChE, α-Gly, and α-Amy inhibitors were reported. The results revealed that compounds 1d and 2c showed promising AChE and BChE inhibition effects. Compound 2a was the most potent inhibitor against α-glycosidase and α-amylase, respectively. Molecular docking studies indicated that the lead compounds' binding energy values and molecular interactions were better than that of tacrine and acarbose. The most bioactive compounds may be considered potent leads for further studies.\",\"PeriodicalId\":17299,\"journal\":{\"name\":\"Journal of the Turkish Chemical Society Section A: Chemistry\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Turkish Chemical Society Section A: Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18596/jotcsa.1111172\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Turkish Chemical Society Section A: Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18596/jotcsa.1111172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Molecular docking studies and biological activities of benzenesulfonamide-based thiourea and thiazolidinone derivatives targeting cholinesterases, α-glucosidase, and α-amylase enzymes
Alzheimer's disease (AD) and diabetes mellitus (DM) are related to abnormal changes in enzyme activity. While acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are the primary targets in the treatment of Alzheimer's disease (AD), α-glucosidase (α-Gly) and α-amylase (α-Amy) enzymes are known for diabetes mellitus (DM). Here, benzenesulfonamide-based thiourea and thiazolidinone derivatives such as AChE, BChE, α-Gly, and α-Amy inhibitors were reported. The results revealed that compounds 1d and 2c showed promising AChE and BChE inhibition effects. Compound 2a was the most potent inhibitor against α-glycosidase and α-amylase, respectively. Molecular docking studies indicated that the lead compounds' binding energy values and molecular interactions were better than that of tacrine and acarbose. The most bioactive compounds may be considered potent leads for further studies.