J. Blech, P. Lindgren, David Pereira, V. Vyatkin, Alois Zoitl
{"title":"IEC 61499标准形式化验证方法的比较","authors":"J. Blech, P. Lindgren, David Pereira, V. Vyatkin, Alois Zoitl","doi":"10.1109/ETFA.2016.7733636","DOIUrl":null,"url":null,"abstract":"Engineering and computer science have come up with a variety of techniques to increase the confidence in systems, increase reliability, facilitate certification, improve reuse and maintainability, improve interoperability and portability. Among them are various techniques based on formal models to enhance testing, validation and verification. In this paper, we are concentrating on formal verification both at runtime and design time of a system. Formal verification of a system property at design time is the process of mathematically proving that the property indeed holds. At runtime, one can check the validity of the property and report deviations by monitoring the system execution. Formal verification relies on semantic models, descriptions of the system and its properties. We report on ongoing verification work and present two different approaches for formal verification of IEC 61499-based programs. We provide two examples of ongoing work to exemplify the design and the runtime verification approaches.","PeriodicalId":6483,"journal":{"name":"2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA)","volume":"1 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A Comparison of Formal Verification Approaches for IEC 61499\",\"authors\":\"J. Blech, P. Lindgren, David Pereira, V. Vyatkin, Alois Zoitl\",\"doi\":\"10.1109/ETFA.2016.7733636\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Engineering and computer science have come up with a variety of techniques to increase the confidence in systems, increase reliability, facilitate certification, improve reuse and maintainability, improve interoperability and portability. Among them are various techniques based on formal models to enhance testing, validation and verification. In this paper, we are concentrating on formal verification both at runtime and design time of a system. Formal verification of a system property at design time is the process of mathematically proving that the property indeed holds. At runtime, one can check the validity of the property and report deviations by monitoring the system execution. Formal verification relies on semantic models, descriptions of the system and its properties. We report on ongoing verification work and present two different approaches for formal verification of IEC 61499-based programs. We provide two examples of ongoing work to exemplify the design and the runtime verification approaches.\",\"PeriodicalId\":6483,\"journal\":{\"name\":\"2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA)\",\"volume\":\"1 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ETFA.2016.7733636\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETFA.2016.7733636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Comparison of Formal Verification Approaches for IEC 61499
Engineering and computer science have come up with a variety of techniques to increase the confidence in systems, increase reliability, facilitate certification, improve reuse and maintainability, improve interoperability and portability. Among them are various techniques based on formal models to enhance testing, validation and verification. In this paper, we are concentrating on formal verification both at runtime and design time of a system. Formal verification of a system property at design time is the process of mathematically proving that the property indeed holds. At runtime, one can check the validity of the property and report deviations by monitoring the system execution. Formal verification relies on semantic models, descriptions of the system and its properties. We report on ongoing verification work and present two different approaches for formal verification of IEC 61499-based programs. We provide two examples of ongoing work to exemplify the design and the runtime verification approaches.