Sebastian Höffner, R. Porzel, Maria M. Hedblom, M. Pomarlan, Vanja Sophie Cangalovic, Johannes Pfau, J. Bateman, R. Malaka
{"title":"对家用机器人日常活动指令的深刻理解","authors":"Sebastian Höffner, R. Porzel, Maria M. Hedblom, M. Pomarlan, Vanja Sophie Cangalovic, Johannes Pfau, J. Bateman, R. Malaka","doi":"10.3233/sw-222973","DOIUrl":null,"url":null,"abstract":"Going from natural language directions to fully specified executable plans for household robots involves a challenging variety of reasoning steps. In this paper, a processing pipeline to tackle these steps for natural language directions is proposed and implemented. It uses the ontological Socio-physical Model of Activities (SOMA) as a common interface between its components. The pipeline includes a natural language parser and a module for natural language grounding. Several reasoning steps formulate simulation plans, in which robot actions are guided by data gathered using human computation. As a last step, the pipeline simulates the given natural language direction inside a virtual environment. The major advantage of employing an overarching ontological framework is that its asserted facts can be stored alongside the semantics of directions, contextual knowledge, and annotated activity models in one central knowledge base. This allows for a unified and efficient knowledge retrieval across all pipeline components, providing flexibility and reasoning capabilities as symbolic knowledge is combined with annotated sub-symbolic models.","PeriodicalId":48694,"journal":{"name":"Semantic Web","volume":"48 1","pages":"895-909"},"PeriodicalIF":3.0000,"publicationDate":"2022-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Deep understanding of everyday activity commands for household robots\",\"authors\":\"Sebastian Höffner, R. Porzel, Maria M. Hedblom, M. Pomarlan, Vanja Sophie Cangalovic, Johannes Pfau, J. Bateman, R. Malaka\",\"doi\":\"10.3233/sw-222973\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Going from natural language directions to fully specified executable plans for household robots involves a challenging variety of reasoning steps. In this paper, a processing pipeline to tackle these steps for natural language directions is proposed and implemented. It uses the ontological Socio-physical Model of Activities (SOMA) as a common interface between its components. The pipeline includes a natural language parser and a module for natural language grounding. Several reasoning steps formulate simulation plans, in which robot actions are guided by data gathered using human computation. As a last step, the pipeline simulates the given natural language direction inside a virtual environment. The major advantage of employing an overarching ontological framework is that its asserted facts can be stored alongside the semantics of directions, contextual knowledge, and annotated activity models in one central knowledge base. This allows for a unified and efficient knowledge retrieval across all pipeline components, providing flexibility and reasoning capabilities as symbolic knowledge is combined with annotated sub-symbolic models.\",\"PeriodicalId\":48694,\"journal\":{\"name\":\"Semantic Web\",\"volume\":\"48 1\",\"pages\":\"895-909\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2022-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Semantic Web\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3233/sw-222973\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Semantic Web","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/sw-222973","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Deep understanding of everyday activity commands for household robots
Going from natural language directions to fully specified executable plans for household robots involves a challenging variety of reasoning steps. In this paper, a processing pipeline to tackle these steps for natural language directions is proposed and implemented. It uses the ontological Socio-physical Model of Activities (SOMA) as a common interface between its components. The pipeline includes a natural language parser and a module for natural language grounding. Several reasoning steps formulate simulation plans, in which robot actions are guided by data gathered using human computation. As a last step, the pipeline simulates the given natural language direction inside a virtual environment. The major advantage of employing an overarching ontological framework is that its asserted facts can be stored alongside the semantics of directions, contextual knowledge, and annotated activity models in one central knowledge base. This allows for a unified and efficient knowledge retrieval across all pipeline components, providing flexibility and reasoning capabilities as symbolic knowledge is combined with annotated sub-symbolic models.
Semantic WebCOMPUTER SCIENCE, ARTIFICIAL INTELLIGENCEC-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
8.30
自引率
6.70%
发文量
68
期刊介绍:
The journal Semantic Web – Interoperability, Usability, Applicability brings together researchers from various fields which share the vision and need for more effective and meaningful ways to share information across agents and services on the future internet and elsewhere. As such, Semantic Web technologies shall support the seamless integration of data, on-the-fly composition and interoperation of Web services, as well as more intuitive search engines. The semantics – or meaning – of information, however, cannot be defined without a context, which makes personalization, trust, and provenance core topics for Semantic Web research. New retrieval paradigms, user interfaces, and visualization techniques have to unleash the power of the Semantic Web and at the same time hide its complexity from the user. Based on this vision, the journal welcomes contributions ranging from theoretical and foundational research over methods and tools to descriptions of concrete ontologies and applications in all areas. We especially welcome papers which add a social, spatial, and temporal dimension to Semantic Web research, as well as application-oriented papers making use of formal semantics.