一种新的基于背景运动的视频稳像精度评估模型

IF 1.2 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Turkish Journal of Electrical Engineering and Computer Sciences Pub Date : 2019-04-01 DOI:10.3906/ELK-1810-68
Md. Alamgir Hossain, Tien-Dung Nguyen, E. Huh
{"title":"一种新的基于背景运动的视频稳像精度评估模型","authors":"Md. Alamgir Hossain, Tien-Dung Nguyen, E. Huh","doi":"10.3906/ELK-1810-68","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new accuracy measurement model for the video stabilization method based on background motion that can accurately measure the performance of the video stabilization algorithm. Undesired residual motion present in the video can quantitatively be measured by the pixel by pixel background motion displacement between two consecutive background frames. First of all, foregrounds are removed from a stabilized video, and then we find the two-dimensional flow vectors for each pixel separately between two consecutive background frames. After that, we calculate a Euclidean distance between these two flow vectors for each pixel one by one, which is regarded as a displacement of each pixel. Then a total Euclidean distance of each frame is averaged to get a mean displacement for each pixel, which is called mean displacement error, and finally we calculate the average mean displacement error. Our experimental results show the effectiveness of our proposed method.","PeriodicalId":49410,"journal":{"name":"Turkish Journal of Electrical Engineering and Computer Sciences","volume":"154 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel accuracy assessment model for video stabilization approaches based on background motion\",\"authors\":\"Md. Alamgir Hossain, Tien-Dung Nguyen, E. Huh\",\"doi\":\"10.3906/ELK-1810-68\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new accuracy measurement model for the video stabilization method based on background motion that can accurately measure the performance of the video stabilization algorithm. Undesired residual motion present in the video can quantitatively be measured by the pixel by pixel background motion displacement between two consecutive background frames. First of all, foregrounds are removed from a stabilized video, and then we find the two-dimensional flow vectors for each pixel separately between two consecutive background frames. After that, we calculate a Euclidean distance between these two flow vectors for each pixel one by one, which is regarded as a displacement of each pixel. Then a total Euclidean distance of each frame is averaged to get a mean displacement for each pixel, which is called mean displacement error, and finally we calculate the average mean displacement error. Our experimental results show the effectiveness of our proposed method.\",\"PeriodicalId\":49410,\"journal\":{\"name\":\"Turkish Journal of Electrical Engineering and Computer Sciences\",\"volume\":\"154 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Turkish Journal of Electrical Engineering and Computer Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3906/ELK-1810-68\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Electrical Engineering and Computer Sciences","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3906/ELK-1810-68","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的基于背景运动的视频稳像算法精度测量模型,该模型能够准确地测量视频稳像算法的性能。通过在两个连续的背景帧之间逐像素的背景运动位移,可以定量地测量视频中存在的不希望的残余运动。首先,从稳定的视频中去除前景,然后在两个连续的背景帧之间分别找到每个像素的二维流向量。然后,我们对每个像素逐个计算这两个流向量之间的欧氏距离,作为每个像素的位移。然后对每帧的总欧氏距离求平均值,得到每个像素的平均位移,称为平均位移误差,最后计算平均平均位移误差。实验结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A novel accuracy assessment model for video stabilization approaches based on background motion
In this paper, we propose a new accuracy measurement model for the video stabilization method based on background motion that can accurately measure the performance of the video stabilization algorithm. Undesired residual motion present in the video can quantitatively be measured by the pixel by pixel background motion displacement between two consecutive background frames. First of all, foregrounds are removed from a stabilized video, and then we find the two-dimensional flow vectors for each pixel separately between two consecutive background frames. After that, we calculate a Euclidean distance between these two flow vectors for each pixel one by one, which is regarded as a displacement of each pixel. Then a total Euclidean distance of each frame is averaged to get a mean displacement for each pixel, which is called mean displacement error, and finally we calculate the average mean displacement error. Our experimental results show the effectiveness of our proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Turkish Journal of Electrical Engineering and Computer Sciences
Turkish Journal of Electrical Engineering and Computer Sciences COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
2.90
自引率
9.10%
发文量
95
审稿时长
6.9 months
期刊介绍: The Turkish Journal of Electrical Engineering & Computer Sciences is published electronically 6 times a year by the Scientific and Technological Research Council of Turkey (TÜBİTAK) Accepts English-language manuscripts in the areas of power and energy, environmental sustainability and energy efficiency, electronics, industry applications, control systems, information and systems, applied electromagnetics, communications, signal and image processing, tomographic image reconstruction, face recognition, biometrics, speech processing, video processing and analysis, object recognition, classification, feature extraction, parallel and distributed computing, cognitive systems, interaction, robotics, digital libraries and content, personalized healthcare, ICT for mobility, sensors, and artificial intelligence. Contribution is open to researchers of all nationalities.
期刊最新文献
A comparative study of YOLO models and a transformer-based YOLOv5 model for mass detection in mammograms Feature selection optimization with filtering and wrapper methods: two disease classification cases New modified carrier-based level-shifted PWM control for NPC rectifiers considered for implementation in EV fast chargers FuzzyCSampling: A Hybrid fuzzy c-means clustering sampling strategy for imbalanced datasets A practical low-dimensional feature vector generation method based on wavelet transform for psychophysiological signals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1