Héctor D. Menéndez, Gunel Jahangirova, Federica Sarro, P. Tonella, David Clark
{"title":"为单元测试多样化重点测试","authors":"Héctor D. Menéndez, Gunel Jahangirova, Federica Sarro, P. Tonella, David Clark","doi":"10.1145/3447265","DOIUrl":null,"url":null,"abstract":"Software changes constantly, because developers add new features or modifications. This directly affects the effectiveness of the test suite associated with that software, especially when these new modifications are in a specific area that no test case covers. This article tackles the problem of generating a high-quality test suite to cover repeatedly a given point in a program, with the ultimate goal of exposing faults possibly affecting the given program point. Both search-based software testing and constraint solving offer ready, but low-quality, solutions to this: Ideally, a maximally diverse covering test set is required, whereas search and constraint solving tend to generate test sets with biased distributions. Our approach, Diversified Focused Testing (DFT), uses a search strategy inspired by GödelTest. We artificially inject parameters into the code branching conditions and use a bi-objective search algorithm to find diverse inputs by perturbing the injected parameters, while keeping the path conditions still satisfiable. Our results demonstrate that our technique, DFT, is able to cover a desired point in the code at least 90% of the time. Moreover, adding diversity improves the bug detection and the mutation killing abilities of the test suites. We show that DFT achieves better results than focused testing, symbolic execution, and random testing by achieving from 3% to 70% improvement in mutation score and up to 100% improvement in fault detection across 105 software subjects.","PeriodicalId":7398,"journal":{"name":"ACM Transactions on Software Engineering and Methodology (TOSEM)","volume":"453 1","pages":"1 - 24"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Diversifying Focused Testing for Unit Testing\",\"authors\":\"Héctor D. Menéndez, Gunel Jahangirova, Federica Sarro, P. Tonella, David Clark\",\"doi\":\"10.1145/3447265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Software changes constantly, because developers add new features or modifications. This directly affects the effectiveness of the test suite associated with that software, especially when these new modifications are in a specific area that no test case covers. This article tackles the problem of generating a high-quality test suite to cover repeatedly a given point in a program, with the ultimate goal of exposing faults possibly affecting the given program point. Both search-based software testing and constraint solving offer ready, but low-quality, solutions to this: Ideally, a maximally diverse covering test set is required, whereas search and constraint solving tend to generate test sets with biased distributions. Our approach, Diversified Focused Testing (DFT), uses a search strategy inspired by GödelTest. We artificially inject parameters into the code branching conditions and use a bi-objective search algorithm to find diverse inputs by perturbing the injected parameters, while keeping the path conditions still satisfiable. Our results demonstrate that our technique, DFT, is able to cover a desired point in the code at least 90% of the time. Moreover, adding diversity improves the bug detection and the mutation killing abilities of the test suites. We show that DFT achieves better results than focused testing, symbolic execution, and random testing by achieving from 3% to 70% improvement in mutation score and up to 100% improvement in fault detection across 105 software subjects.\",\"PeriodicalId\":7398,\"journal\":{\"name\":\"ACM Transactions on Software Engineering and Methodology (TOSEM)\",\"volume\":\"453 1\",\"pages\":\"1 - 24\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Software Engineering and Methodology (TOSEM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3447265\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Software Engineering and Methodology (TOSEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3447265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Software changes constantly, because developers add new features or modifications. This directly affects the effectiveness of the test suite associated with that software, especially when these new modifications are in a specific area that no test case covers. This article tackles the problem of generating a high-quality test suite to cover repeatedly a given point in a program, with the ultimate goal of exposing faults possibly affecting the given program point. Both search-based software testing and constraint solving offer ready, but low-quality, solutions to this: Ideally, a maximally diverse covering test set is required, whereas search and constraint solving tend to generate test sets with biased distributions. Our approach, Diversified Focused Testing (DFT), uses a search strategy inspired by GödelTest. We artificially inject parameters into the code branching conditions and use a bi-objective search algorithm to find diverse inputs by perturbing the injected parameters, while keeping the path conditions still satisfiable. Our results demonstrate that our technique, DFT, is able to cover a desired point in the code at least 90% of the time. Moreover, adding diversity improves the bug detection and the mutation killing abilities of the test suites. We show that DFT achieves better results than focused testing, symbolic execution, and random testing by achieving from 3% to 70% improvement in mutation score and up to 100% improvement in fault detection across 105 software subjects.