通过ToxCast和深度学习模型确定与乳腺癌相关的内分泌干扰化学物质的潜在目标

Miaomiao Guan, Guanpeng Qi, Zuojing Li, X. Hou
{"title":"通过ToxCast和深度学习模型确定与乳腺癌相关的内分泌干扰化学物质的潜在目标","authors":"Miaomiao Guan, Guanpeng Qi, Zuojing Li, X. Hou","doi":"10.1080/02772248.2023.2212827","DOIUrl":null,"url":null,"abstract":"Abstract Of 47 endocrine-disrupting chemicals (EDCs) collected from literature and related to breast cancer, not all were tested in a toxicity forecaster (ToxCast) program of the US-Environmental Protection Agency (EPA). Therefore, deep learning models based on the toxicity data in that database have been used to predict the molecular toxicity of the untested EDCs. Combined with the values of median lethal doses (LDs), six potential targets of EDCs related to breast cancer have been identified, viz. MYC proto-oncogene, urokinase plasminogen activator receptor (PLAUR), cytochrome P450 4 A 11, nuclear receptor 1 H 2 (NR1H2), peroxisome proliferator-activated receptor alpha (PPARA), and hypoxia-inducible factor 1 alpha (HIF1A).","PeriodicalId":23210,"journal":{"name":"Toxicological & Environmental Chemistry","volume":"37 1","pages":"128 - 143"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Potential targets of endocrine-disrupting chemicals related to breast cancer identified by ToxCast and deep learning models\",\"authors\":\"Miaomiao Guan, Guanpeng Qi, Zuojing Li, X. Hou\",\"doi\":\"10.1080/02772248.2023.2212827\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Of 47 endocrine-disrupting chemicals (EDCs) collected from literature and related to breast cancer, not all were tested in a toxicity forecaster (ToxCast) program of the US-Environmental Protection Agency (EPA). Therefore, deep learning models based on the toxicity data in that database have been used to predict the molecular toxicity of the untested EDCs. Combined with the values of median lethal doses (LDs), six potential targets of EDCs related to breast cancer have been identified, viz. MYC proto-oncogene, urokinase plasminogen activator receptor (PLAUR), cytochrome P450 4 A 11, nuclear receptor 1 H 2 (NR1H2), peroxisome proliferator-activated receptor alpha (PPARA), and hypoxia-inducible factor 1 alpha (HIF1A).\",\"PeriodicalId\":23210,\"journal\":{\"name\":\"Toxicological & Environmental Chemistry\",\"volume\":\"37 1\",\"pages\":\"128 - 143\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicological & Environmental Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/02772248.2023.2212827\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicological & Environmental Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/02772248.2023.2212827","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

从文献中收集到的47种与乳腺癌相关的内分泌干扰化学物质(EDCs),并不是所有的都在美国环境保护署(EPA)的毒性预测(ToxCast)项目中进行了测试。因此,基于该数据库中毒性数据的深度学习模型已被用于预测未经测试的EDCs的分子毒性。结合中位致死剂量(ld),确定了6个与乳腺癌相关的EDCs的潜在靶点,即MYC原癌基因、尿激酶纤溶酶原激活物受体(PLAUR)、细胞色素P450 4a11、核受体1h2 (NR1H2)、过氧化物酶体增殖物激活受体α (PPARA)和缺氧诱导因子1 α (HIF1A)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Potential targets of endocrine-disrupting chemicals related to breast cancer identified by ToxCast and deep learning models
Abstract Of 47 endocrine-disrupting chemicals (EDCs) collected from literature and related to breast cancer, not all were tested in a toxicity forecaster (ToxCast) program of the US-Environmental Protection Agency (EPA). Therefore, deep learning models based on the toxicity data in that database have been used to predict the molecular toxicity of the untested EDCs. Combined with the values of median lethal doses (LDs), six potential targets of EDCs related to breast cancer have been identified, viz. MYC proto-oncogene, urokinase plasminogen activator receptor (PLAUR), cytochrome P450 4 A 11, nuclear receptor 1 H 2 (NR1H2), peroxisome proliferator-activated receptor alpha (PPARA), and hypoxia-inducible factor 1 alpha (HIF1A).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dissipation kinetics and decontamination of novaluron residues in cowpea, eggplant, and okra Artificial bacterial consortium for bioremediation of hydrocarbon polluted sites Univariate and multivariate kinetic and structural analysis of photoinduced tetracycline degradation Estuarine copper concentrations following boat-wash down and subsequent accumulation in blue mussels Potential targets of endocrine-disrupting chemicals related to breast cancer identified by ToxCast and deep learning models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1