碳污染生长的非晶碳单纳米尖场发射特性的实验与计算研究。一、实验与计算

C. Edgcombe, U. Valdré
{"title":"碳污染生长的非晶碳单纳米尖场发射特性的实验与计算研究。一、实验与计算","authors":"C. Edgcombe, U. Valdré","doi":"10.1080/13642810208218357","DOIUrl":null,"url":null,"abstract":"Abstract Some properties of electron field emitters based on various types of carbon are difficult to measure and are not well known. This is particularly true for amorphous carbon films, for nanotubes and for nanotips grown by carbon contamination in a scanning electron microscope. We show that by combining together experimental data (i.e. emitter geometry from electron microscopy observations, and field emission current and applied voltage measurements), numerically computed values of the electric field at the tip surface and the Fowler-Nordheim (F-N) equation, it is possible to estimate values of parameters such as the work function, the enhancement factor, the tip radius and the effective emitting area. The general applicability of this approach and corresponding results are emphasized. We also show that, when the experimental parameters that are known are superfluous in number (i.e. more than the minimum number needed), a discrepancy exists, firstly, between the value of the emitter radius worked out through the F-N equation and that derived from electron microscopy and, secondly, between the calculated work function and that independently obtained by Kelvin probe microscopy. Possible reasons for these discrepancies are put forward and discussed.","PeriodicalId":20016,"journal":{"name":"Philosophical Magazine Part B","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2002-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":"{\"title\":\"Experimental and computational study of field emission characteristics from amorphous carbon single nanotips grown by carbon contamination. I. Experiments and computation\",\"authors\":\"C. Edgcombe, U. Valdré\",\"doi\":\"10.1080/13642810208218357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Some properties of electron field emitters based on various types of carbon are difficult to measure and are not well known. This is particularly true for amorphous carbon films, for nanotubes and for nanotips grown by carbon contamination in a scanning electron microscope. We show that by combining together experimental data (i.e. emitter geometry from electron microscopy observations, and field emission current and applied voltage measurements), numerically computed values of the electric field at the tip surface and the Fowler-Nordheim (F-N) equation, it is possible to estimate values of parameters such as the work function, the enhancement factor, the tip radius and the effective emitting area. The general applicability of this approach and corresponding results are emphasized. We also show that, when the experimental parameters that are known are superfluous in number (i.e. more than the minimum number needed), a discrepancy exists, firstly, between the value of the emitter radius worked out through the F-N equation and that derived from electron microscopy and, secondly, between the calculated work function and that independently obtained by Kelvin probe microscopy. Possible reasons for these discrepancies are put forward and discussed.\",\"PeriodicalId\":20016,\"journal\":{\"name\":\"Philosophical Magazine Part B\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophical Magazine Part B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/13642810208218357\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Magazine Part B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/13642810208218357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

摘要

基于不同类型碳的电子场发射体的一些性质是难以测量和不为人所知的。在扫描电子显微镜下,对于非晶碳膜、纳米管和由碳污染生长的纳米尖尤其如此。我们表明,通过结合实验数据(即从电子显微镜观察到的发射器几何形状、场发射电流和施加电压测量)、尖端表面的数值计算电场值和Fowler-Nordheim (F-N)方程,可以估计出诸如功函数、增强因子、尖端半径和有效发射面积等参数的值。强调了这种方法的普遍适用性和相应的结果。我们还表明,当已知的实验参数在数量上是多余的(即超过所需的最小数量)时,首先,通过F-N方程计算出的发射器半径值与电子显微镜得出的值之间存在差异,其次,计算出的功函数与开尔文探针显微镜独立获得的功函数之间存在差异。提出并讨论了造成这些差异的可能原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental and computational study of field emission characteristics from amorphous carbon single nanotips grown by carbon contamination. I. Experiments and computation
Abstract Some properties of electron field emitters based on various types of carbon are difficult to measure and are not well known. This is particularly true for amorphous carbon films, for nanotubes and for nanotips grown by carbon contamination in a scanning electron microscope. We show that by combining together experimental data (i.e. emitter geometry from electron microscopy observations, and field emission current and applied voltage measurements), numerically computed values of the electric field at the tip surface and the Fowler-Nordheim (F-N) equation, it is possible to estimate values of parameters such as the work function, the enhancement factor, the tip radius and the effective emitting area. The general applicability of this approach and corresponding results are emphasized. We also show that, when the experimental parameters that are known are superfluous in number (i.e. more than the minimum number needed), a discrepancy exists, firstly, between the value of the emitter radius worked out through the F-N equation and that derived from electron microscopy and, secondly, between the calculated work function and that independently obtained by Kelvin probe microscopy. Possible reasons for these discrepancies are put forward and discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The magnetic properties of the Sherrington-Kirkpatrick model for spin glasses 3d transition metal intercalates of the niobium and trantalum dichalcogenides Invar effect in Pu-Ga alloys The origin of radiation instability in yttrium-ion-doped lead tungstate crystals An unusual hollow cylindrical Fermi surface of a quasi-two-dimensional compound CeAgSb2
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1