{"title":"使用深度学习模型、内容特征和作者元数据推荐研究论文","authors":"Si-Hong Lam, Eric Brewer, Yiu-Kai Ng","doi":"10.1109/IRI49571.2020.00045","DOIUrl":null,"url":null,"abstract":"According to the Canadian Science Publishing, there are approximately 2.5 million scientific papers published each year. The huge volume of publications can be contributed to a substantial increase in the total number of academic journals, including the increasing number of predatory or fake scientific journals, which yield high volumes of poor-quality research work. The effect of this scenario is that there is an obsolete jungle of journals to flip through in searching for high-quality and relevant references for researchers, ranging from the ones who simply look for citations to cite or latest development and knowledge in a specific scientific area of study. Querying existing web search engines and research paper archived websites is not the solution to the problem, since they are m-equipped to suggest high quality publications to meet the users’ information needs. In solving this problem, we propose an elegant research paper recommender, which is unique compared with existing ones, since besides considering the topics and contents of related publications, it also examines the authority and popularity of each publication to ensure its quality. Conducted empirical study shows that our recommender outperforms existing research paper recommenders and contributes to the design of searching relevant publications.","PeriodicalId":93159,"journal":{"name":"2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science : IRI 2020 : proceedings : virtual conference, 11-13 August 2020. IEEE International Conference on Information Reuse and Integration (21st : 2...","volume":"42 1","pages":"265-270"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Using a Deep Learning Model, Content Features, and Author Metadata to Recommend Research Papers\",\"authors\":\"Si-Hong Lam, Eric Brewer, Yiu-Kai Ng\",\"doi\":\"10.1109/IRI49571.2020.00045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"According to the Canadian Science Publishing, there are approximately 2.5 million scientific papers published each year. The huge volume of publications can be contributed to a substantial increase in the total number of academic journals, including the increasing number of predatory or fake scientific journals, which yield high volumes of poor-quality research work. The effect of this scenario is that there is an obsolete jungle of journals to flip through in searching for high-quality and relevant references for researchers, ranging from the ones who simply look for citations to cite or latest development and knowledge in a specific scientific area of study. Querying existing web search engines and research paper archived websites is not the solution to the problem, since they are m-equipped to suggest high quality publications to meet the users’ information needs. In solving this problem, we propose an elegant research paper recommender, which is unique compared with existing ones, since besides considering the topics and contents of related publications, it also examines the authority and popularity of each publication to ensure its quality. Conducted empirical study shows that our recommender outperforms existing research paper recommenders and contributes to the design of searching relevant publications.\",\"PeriodicalId\":93159,\"journal\":{\"name\":\"2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science : IRI 2020 : proceedings : virtual conference, 11-13 August 2020. IEEE International Conference on Information Reuse and Integration (21st : 2...\",\"volume\":\"42 1\",\"pages\":\"265-270\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science : IRI 2020 : proceedings : virtual conference, 11-13 August 2020. IEEE International Conference on Information Reuse and Integration (21st : 2...\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRI49571.2020.00045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science : IRI 2020 : proceedings : virtual conference, 11-13 August 2020. IEEE International Conference on Information Reuse and Integration (21st : 2...","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI49571.2020.00045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

根据加拿大科学出版社的数据,每年大约有250万篇科学论文发表。大量的出版物可以促成学术期刊总数的大幅增加,包括越来越多的掠夺性或假冒科学期刊,这些期刊产生了大量低质量的研究工作。这种情况的影响是,在为研究人员寻找高质量和相关的参考文献时,有一个过时的期刊丛林要翻阅,从那些只是寻找引用或在特定科学研究领域的最新发展和知识的期刊。查询现有的网络搜索引擎和研究论文存档网站并不是解决问题的办法,因为它们有能力建议高质量的出版物来满足用户的信息需求。为了解决这一问题,我们提出了一种优雅的研究论文推荐,与现有的研究论文推荐相比,它是独一无二的,因为它除了考虑相关出版物的主题和内容外,还考察了每篇出版物的权威性和受欢迎程度,以确保其质量。实证研究表明,我们的推荐器优于现有的研究论文推荐器,并有助于搜索相关出版物的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using a Deep Learning Model, Content Features, and Author Metadata to Recommend Research Papers
According to the Canadian Science Publishing, there are approximately 2.5 million scientific papers published each year. The huge volume of publications can be contributed to a substantial increase in the total number of academic journals, including the increasing number of predatory or fake scientific journals, which yield high volumes of poor-quality research work. The effect of this scenario is that there is an obsolete jungle of journals to flip through in searching for high-quality and relevant references for researchers, ranging from the ones who simply look for citations to cite or latest development and knowledge in a specific scientific area of study. Querying existing web search engines and research paper archived websites is not the solution to the problem, since they are m-equipped to suggest high quality publications to meet the users’ information needs. In solving this problem, we propose an elegant research paper recommender, which is unique compared with existing ones, since besides considering the topics and contents of related publications, it also examines the authority and popularity of each publication to ensure its quality. Conducted empirical study shows that our recommender outperforms existing research paper recommenders and contributes to the design of searching relevant publications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Attention-Guided Generative Adversarial Network to Address Atypical Anatomy in Synthetic CT Generation. Natural Language-based Integration of Online Review Datasets for Identification of Sex Trafficking Businesses. An Adaptive and Dynamic Biosensor Epidemic Model for COVID-19 Relating the Empirical Foundations of Attack Generation and Vulnerability Discovery Latent Feature Modelling for Recommender Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1