时钟基因和褪黑激素在癌细胞中的作用:综述

L. Chuffa, F. Seiva, M. Cucielo, H. S. Silveira, R. Reiter, L. A. Lupi
{"title":"时钟基因和褪黑激素在癌细胞中的作用:综述","authors":"L. Chuffa, F. Seiva, M. Cucielo, H. S. Silveira, R. Reiter, L. A. Lupi","doi":"10.32794/MR11250026","DOIUrl":null,"url":null,"abstract":"     Circadian rhythms control most biological processes in every organism and their disruption or an aberrant function in the expression of clock genes are associated with a number of cancers including some hormone-dependent and independent cancers. The processes involved in carcinogenesis and tumor progression are complex, but understanding the daily profiles of the core clock genes and their clock-controlled genes is essential to evaluate specifically the molecular program of the cancer phenotype; this may be helpful in providing a more realistic strategy for both diagnosis and treatment during the course of the disease. Because melatonin production and secretion oscillates rhythmically through the light:dark cycle and is related to the circadian machinery genes (Clock, Bmal1, Periods, and Cryptochromes), its regulatory role on clock genes in cancer cells may bring additional evidence regarding the mechanism(s) by which melatonin is involved. Mechanistically, melatonin acts via proteasome inhibition and sirtuins to indirectly modulate clock genes in cancer; however, melatonin seems to be capable of directly altering the expression of clock genes to affect cancer development. Depending on cancer cell type, melatonin might up or downregulate specific clock genes to control cell cycle, survival, repair mechanisms, etc. In parallel, melatonin exerts pro-apoptotic, anti-proliferative and pro-oxidative effects, metabolic shifting, reduction in neovasculogenesis and inflammation, and restores chemosensitivity of cancer cells. Finally, melatonin improves the life quality of patients. This review focuses on the main functions of melatonin on clock genes, and reviews, from a clinical and experimental standpoint, how melatonin regulates the expression of clock genes in some prevalent cancer types such as breast, prostate, liver, and colon cancers, leukemia and melanoma. We further emphasized possible signaling mechanisms whereby melatonin interferes with clockwork genes and circadian-controlled genes within cancer cells.  ","PeriodicalId":18604,"journal":{"name":"Melatonin Research","volume":"285 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Clock genes and the role of melatonin in cancer cells: an overview\",\"authors\":\"L. Chuffa, F. Seiva, M. Cucielo, H. S. Silveira, R. Reiter, L. A. Lupi\",\"doi\":\"10.32794/MR11250026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"     Circadian rhythms control most biological processes in every organism and their disruption or an aberrant function in the expression of clock genes are associated with a number of cancers including some hormone-dependent and independent cancers. The processes involved in carcinogenesis and tumor progression are complex, but understanding the daily profiles of the core clock genes and their clock-controlled genes is essential to evaluate specifically the molecular program of the cancer phenotype; this may be helpful in providing a more realistic strategy for both diagnosis and treatment during the course of the disease. Because melatonin production and secretion oscillates rhythmically through the light:dark cycle and is related to the circadian machinery genes (Clock, Bmal1, Periods, and Cryptochromes), its regulatory role on clock genes in cancer cells may bring additional evidence regarding the mechanism(s) by which melatonin is involved. Mechanistically, melatonin acts via proteasome inhibition and sirtuins to indirectly modulate clock genes in cancer; however, melatonin seems to be capable of directly altering the expression of clock genes to affect cancer development. Depending on cancer cell type, melatonin might up or downregulate specific clock genes to control cell cycle, survival, repair mechanisms, etc. In parallel, melatonin exerts pro-apoptotic, anti-proliferative and pro-oxidative effects, metabolic shifting, reduction in neovasculogenesis and inflammation, and restores chemosensitivity of cancer cells. Finally, melatonin improves the life quality of patients. This review focuses on the main functions of melatonin on clock genes, and reviews, from a clinical and experimental standpoint, how melatonin regulates the expression of clock genes in some prevalent cancer types such as breast, prostate, liver, and colon cancers, leukemia and melanoma. We further emphasized possible signaling mechanisms whereby melatonin interferes with clockwork genes and circadian-controlled genes within cancer cells.  \",\"PeriodicalId\":18604,\"journal\":{\"name\":\"Melatonin Research\",\"volume\":\"285 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Melatonin Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32794/MR11250026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Melatonin Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32794/MR11250026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

昼夜节律控制着每个生物体的大多数生物过程,其在时钟基因表达中的破坏或异常功能与许多癌症有关,包括一些激素依赖性和独立型癌症。癌症发生和肿瘤进展的过程是复杂的,但了解核心时钟基因及其时钟控制基因的日常概况对于评估癌症表型的分子程序至关重要;这可能有助于在疾病过程中为诊断和治疗提供更现实的策略。由于褪黑激素的产生和分泌在明暗周期中有节律地振荡,并且与昼夜节律机制基因(Clock, Bmal1, Periods,和Cryptochromes)有关,它在癌细胞中对时钟基因的调节作用可能会为褪黑激素参与的机制提供额外的证据。从机制上讲,褪黑激素通过蛋白酶体抑制和sirtuins间接调节癌症中的时钟基因;然而,褪黑素似乎能够直接改变生物钟基因的表达,从而影响癌症的发展。褪黑素可能根据癌细胞类型上调或下调特定的时钟基因,从而控制细胞周期、存活、修复机制等。同时,褪黑素具有促凋亡、抗增殖和促氧化作用,代谢转移,减少新生血管和炎症,并恢复癌细胞的化学敏感性。最后,褪黑素改善了患者的生活质量。本文综述了褪黑素对生物钟基因的主要作用,并从临床和实验角度综述了褪黑素在乳腺癌、前列腺癌、肝癌、结肠癌、白血病和黑色素瘤等常见癌症类型中如何调节生物钟基因的表达。我们进一步强调了褪黑素干扰癌细胞内生物钟基因和昼夜节律控制基因的可能信号机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Clock genes and the role of melatonin in cancer cells: an overview
     Circadian rhythms control most biological processes in every organism and their disruption or an aberrant function in the expression of clock genes are associated with a number of cancers including some hormone-dependent and independent cancers. The processes involved in carcinogenesis and tumor progression are complex, but understanding the daily profiles of the core clock genes and their clock-controlled genes is essential to evaluate specifically the molecular program of the cancer phenotype; this may be helpful in providing a more realistic strategy for both diagnosis and treatment during the course of the disease. Because melatonin production and secretion oscillates rhythmically through the light:dark cycle and is related to the circadian machinery genes (Clock, Bmal1, Periods, and Cryptochromes), its regulatory role on clock genes in cancer cells may bring additional evidence regarding the mechanism(s) by which melatonin is involved. Mechanistically, melatonin acts via proteasome inhibition and sirtuins to indirectly modulate clock genes in cancer; however, melatonin seems to be capable of directly altering the expression of clock genes to affect cancer development. Depending on cancer cell type, melatonin might up or downregulate specific clock genes to control cell cycle, survival, repair mechanisms, etc. In parallel, melatonin exerts pro-apoptotic, anti-proliferative and pro-oxidative effects, metabolic shifting, reduction in neovasculogenesis and inflammation, and restores chemosensitivity of cancer cells. Finally, melatonin improves the life quality of patients. This review focuses on the main functions of melatonin on clock genes, and reviews, from a clinical and experimental standpoint, how melatonin regulates the expression of clock genes in some prevalent cancer types such as breast, prostate, liver, and colon cancers, leukemia and melanoma. We further emphasized possible signaling mechanisms whereby melatonin interferes with clockwork genes and circadian-controlled genes within cancer cells.  
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Melatonin as a promising agent alleviating endocrine deregulation and concurrent cardiovascular dysfunction: a review and future prospect Melatonin and viral infections: A review focusing on therapeutic effects and SARS-CoV-2 Physiological processes underpinning the ubiquitous benefits and interactions of melatonin, butyrate and green tea in neurodegenerative conditions Olfactory neuronal precursors as a model to analyze the effects of melatonin in Alzheimer's disease. Melatonin and cancer: Exploring gene networks and functional categories
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1