在全基因组关联研究中检测高阶基因间相互作用的高效快速分析

Sohee Oh, Jaehoon Lee, Min-Seok Kwon, Kyunga Kim, T. Park
{"title":"在全基因组关联研究中检测高阶基因间相互作用的高效快速分析","authors":"Sohee Oh, Jaehoon Lee, Min-Seok Kwon, Kyunga Kim, T. Park","doi":"10.1109/BIBM.2011.103","DOIUrl":null,"url":null,"abstract":"Most common complex traits are affected by multiple genes and/or environmental factors. To understand genetic architecture of complex traits, the investigation of gene-gene and gene-environment interactions can be essential. However, conducting gene-gene interaction using genome-wide data requires exploring a huge search space and suffers from a computation burden due to high dimensionality of genetic data. To identify gene-gene interaction more efficiently, we propose a gene-based reduction method which first summarizes the gene effect by combining multiple single nucleotide polymorphism (SNP) and then performs the gene-gene interaction via the summarized gene effect. By reducing the search space from SNPs to gene, our gene-based method becomes efficient and fast for identifying gene-gene interaction in genome wide association studies. The gene-based reduction method is illustrated by hypertension data from a Korean population.","PeriodicalId":6345,"journal":{"name":"2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)","volume":"49 1","pages":"83-88"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Efficient and Fast Analysis for Detecting High Order Gene-by-Gene Interactions in a Genome-Wide Association Study\",\"authors\":\"Sohee Oh, Jaehoon Lee, Min-Seok Kwon, Kyunga Kim, T. Park\",\"doi\":\"10.1109/BIBM.2011.103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most common complex traits are affected by multiple genes and/or environmental factors. To understand genetic architecture of complex traits, the investigation of gene-gene and gene-environment interactions can be essential. However, conducting gene-gene interaction using genome-wide data requires exploring a huge search space and suffers from a computation burden due to high dimensionality of genetic data. To identify gene-gene interaction more efficiently, we propose a gene-based reduction method which first summarizes the gene effect by combining multiple single nucleotide polymorphism (SNP) and then performs the gene-gene interaction via the summarized gene effect. By reducing the search space from SNPs to gene, our gene-based method becomes efficient and fast for identifying gene-gene interaction in genome wide association studies. The gene-based reduction method is illustrated by hypertension data from a Korean population.\",\"PeriodicalId\":6345,\"journal\":{\"name\":\"2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)\",\"volume\":\"49 1\",\"pages\":\"83-88\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBM.2011.103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2011.103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

大多数常见的复杂性状受到多种基因和/或环境因素的影响。为了理解复杂性状的遗传结构,基因-基因和基因-环境相互作用的研究是必不可少的。然而,利用全基因组数据进行基因-基因相互作用需要探索巨大的搜索空间,并且由于遗传数据的高维,计算负担很大。为了更有效地识别基因-基因相互作用,我们提出了一种基于基因的还原方法,该方法首先通过组合多个单核苷酸多态性(SNP)来总结基因效应,然后通过总结的基因效应进行基因-基因相互作用。通过减少从SNPs到基因的搜索空间,我们的基于基因的方法在全基因组关联研究中能够高效、快速地识别基因-基因相互作用。以基因为基础的减少方法由韩国人群的高血压数据说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient and Fast Analysis for Detecting High Order Gene-by-Gene Interactions in a Genome-Wide Association Study
Most common complex traits are affected by multiple genes and/or environmental factors. To understand genetic architecture of complex traits, the investigation of gene-gene and gene-environment interactions can be essential. However, conducting gene-gene interaction using genome-wide data requires exploring a huge search space and suffers from a computation burden due to high dimensionality of genetic data. To identify gene-gene interaction more efficiently, we propose a gene-based reduction method which first summarizes the gene effect by combining multiple single nucleotide polymorphism (SNP) and then performs the gene-gene interaction via the summarized gene effect. By reducing the search space from SNPs to gene, our gene-based method becomes efficient and fast for identifying gene-gene interaction in genome wide association studies. The gene-based reduction method is illustrated by hypertension data from a Korean population.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evolution of protein architectures inferred from phylogenomic analysis of CATH Hierarchical modeling of alternative exon usage associations with survival 3D point cloud sensors for low-cost medical in-situ visualization Bayesian Classifiers for Chemical Toxicity Prediction Normal mode analysis of protein structure dynamics based on residue contact energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1