{"title":"负三角形托卡马克中快离子驱动鱼骨的数值模拟","authors":"Ren Zhen-Zhen, Shen Wei","doi":"10.7498/aps.72.20230650","DOIUrl":null,"url":null,"abstract":"It is shown that discharges with negative triangularity have lower turbulence induced transport and better energy confinement, so the tokamaks with negative triangularity are recognized as a better choice for future fusion devices. In order to explore the features of the energetic particle driven instabilities with negative triangularity, the kinetic- magnetohydrodynamic hybrid code M3D-K has been applied to investigate the linear instability and nonlinear evolution of the fishbone driven by energetic ions with different triangularity. Based on EAST like parameters, it is found that negative triangularity destabilizes the ideal internal kink mode, but stabilizes the fishbone instability. Nonlinear simulations show that the fishbone instability with negative triangularity is hard to saturate without fluid nonlinearity. The possible explanation is that the orbits of fast ions locate more centrally with negative triagularity, so the energy exchange between energetic ions and the fishbone is more efficient than that with positive triangularity. These simulation results demonstrate that considering the fishbone driven by energetic particles, the negative triangularity does not confer a obvious advantage over the positive triangularity.","PeriodicalId":6995,"journal":{"name":"物理学报","volume":"5 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical simulations of fishbones driven by fast ions in negative triangularity tokamak\",\"authors\":\"Ren Zhen-Zhen, Shen Wei\",\"doi\":\"10.7498/aps.72.20230650\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is shown that discharges with negative triangularity have lower turbulence induced transport and better energy confinement, so the tokamaks with negative triangularity are recognized as a better choice for future fusion devices. In order to explore the features of the energetic particle driven instabilities with negative triangularity, the kinetic- magnetohydrodynamic hybrid code M3D-K has been applied to investigate the linear instability and nonlinear evolution of the fishbone driven by energetic ions with different triangularity. Based on EAST like parameters, it is found that negative triangularity destabilizes the ideal internal kink mode, but stabilizes the fishbone instability. Nonlinear simulations show that the fishbone instability with negative triangularity is hard to saturate without fluid nonlinearity. The possible explanation is that the orbits of fast ions locate more centrally with negative triagularity, so the energy exchange between energetic ions and the fishbone is more efficient than that with positive triangularity. These simulation results demonstrate that considering the fishbone driven by energetic particles, the negative triangularity does not confer a obvious advantage over the positive triangularity.\",\"PeriodicalId\":6995,\"journal\":{\"name\":\"物理学报\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"物理学报\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.7498/aps.72.20230650\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"物理学报","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.7498/aps.72.20230650","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Numerical simulations of fishbones driven by fast ions in negative triangularity tokamak
It is shown that discharges with negative triangularity have lower turbulence induced transport and better energy confinement, so the tokamaks with negative triangularity are recognized as a better choice for future fusion devices. In order to explore the features of the energetic particle driven instabilities with negative triangularity, the kinetic- magnetohydrodynamic hybrid code M3D-K has been applied to investigate the linear instability and nonlinear evolution of the fishbone driven by energetic ions with different triangularity. Based on EAST like parameters, it is found that negative triangularity destabilizes the ideal internal kink mode, but stabilizes the fishbone instability. Nonlinear simulations show that the fishbone instability with negative triangularity is hard to saturate without fluid nonlinearity. The possible explanation is that the orbits of fast ions locate more centrally with negative triagularity, so the energy exchange between energetic ions and the fishbone is more efficient than that with positive triangularity. These simulation results demonstrate that considering the fishbone driven by energetic particles, the negative triangularity does not confer a obvious advantage over the positive triangularity.
期刊介绍:
Acta Physica Sinica (Acta Phys. Sin.) is supervised by Chinese Academy of Sciences and sponsored by Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences. Published by Chinese Physical Society and launched in 1933, it is a semimonthly journal with about 40 articles per issue.
It publishes original and top quality research papers, rapid communications and reviews in all branches of physics in Chinese. Acta Phys. Sin. enjoys high reputation among Chinese physics journals and plays a key role in bridging China and rest of the world in physics research. Specific areas of interest include: Condensed matter and materials physics; Atomic, molecular, and optical physics; Statistical, nonlinear, and soft matter physics; Plasma physics; Interdisciplinary physics.