基于噪声调整的高光谱遥感影像可视化主成分分析

Shangshu Cai, Q. Du, R. Moorhead, M. J. Mohammadi-Aragh, D. Irby
{"title":"基于噪声调整的高光谱遥感影像可视化主成分分析","authors":"Shangshu Cai, Q. Du, R. Moorhead, M. J. Mohammadi-Aragh, D. Irby","doi":"10.1109/VIS.2005.70","DOIUrl":null,"url":null,"abstract":"Introduction In recent years, hyperspectral imaging has been developed in remote sensing, which uses hundreds of co-registered spectral channels to acquires images for the same area on the earth. Its high spectral resolution enables researchers and scientists to detect features, classify objects, and extract ground information more accurately. PCA [1] is a typical approach for high-dimensional data analysis, which assembles the major data information into the first several principal components (PCs) based on variance maximization. However, variance is not a good criterion to rank the data features because part of the variance may be from noise. The noise should be whitened before PCA, which is equivalently to rank the PCs in terms of signal-to-noise ratio. The resultant technique is called Noise-Adjusted Principal Component Analysis (NAPCA) [2]. In our research, NAPCA is employed to visualize images taken by Hyperion, the first spaceborne hyperspectral sensor onboard NASA’s EO-1 satellite.","PeriodicalId":91181,"journal":{"name":"Visualization : proceedings of the ... IEEE Conference on Visualization. IEEE Conference on Visualization","volume":"31 1","pages":"105"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Noise-Adjusted Principle Component Analysis For Hyperspectral Remotely Sensed Imagery Visualization\",\"authors\":\"Shangshu Cai, Q. Du, R. Moorhead, M. J. Mohammadi-Aragh, D. Irby\",\"doi\":\"10.1109/VIS.2005.70\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction In recent years, hyperspectral imaging has been developed in remote sensing, which uses hundreds of co-registered spectral channels to acquires images for the same area on the earth. Its high spectral resolution enables researchers and scientists to detect features, classify objects, and extract ground information more accurately. PCA [1] is a typical approach for high-dimensional data analysis, which assembles the major data information into the first several principal components (PCs) based on variance maximization. However, variance is not a good criterion to rank the data features because part of the variance may be from noise. The noise should be whitened before PCA, which is equivalently to rank the PCs in terms of signal-to-noise ratio. The resultant technique is called Noise-Adjusted Principal Component Analysis (NAPCA) [2]. In our research, NAPCA is employed to visualize images taken by Hyperion, the first spaceborne hyperspectral sensor onboard NASA’s EO-1 satellite.\",\"PeriodicalId\":91181,\"journal\":{\"name\":\"Visualization : proceedings of the ... IEEE Conference on Visualization. IEEE Conference on Visualization\",\"volume\":\"31 1\",\"pages\":\"105\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Visualization : proceedings of the ... IEEE Conference on Visualization. IEEE Conference on Visualization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VIS.2005.70\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visualization : proceedings of the ... IEEE Conference on Visualization. IEEE Conference on Visualization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VIS.2005.70","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

近年来,高光谱成像技术在遥感领域得到了发展,利用数百个共配准的光谱通道获取地球上同一区域的图像。它的高光谱分辨率使研究人员和科学家能够更准确地检测特征,对物体进行分类,并提取地面信息。PCA[1]是一种典型的高维数据分析方法,它基于方差最大化将主要数据信息组合成前几个主成分(PCs)。然而,方差并不是对数据特征进行排序的好标准,因为部分方差可能来自噪声。在PCA之前,需要对噪声进行白化处理,相当于根据信噪比对pc进行排序。由此产生的技术被称为噪声调整主成分分析(NAPCA)[2]。在我们的研究中,NAPCA被用于可视化由Hyperion拍摄的图像,Hyperion是美国宇航局EO-1卫星上的第一个星载高光谱传感器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Noise-Adjusted Principle Component Analysis For Hyperspectral Remotely Sensed Imagery Visualization
Introduction In recent years, hyperspectral imaging has been developed in remote sensing, which uses hundreds of co-registered spectral channels to acquires images for the same area on the earth. Its high spectral resolution enables researchers and scientists to detect features, classify objects, and extract ground information more accurately. PCA [1] is a typical approach for high-dimensional data analysis, which assembles the major data information into the first several principal components (PCs) based on variance maximization. However, variance is not a good criterion to rank the data features because part of the variance may be from noise. The noise should be whitened before PCA, which is equivalently to rank the PCs in terms of signal-to-noise ratio. The resultant technique is called Noise-Adjusted Principal Component Analysis (NAPCA) [2]. In our research, NAPCA is employed to visualize images taken by Hyperion, the first spaceborne hyperspectral sensor onboard NASA’s EO-1 satellite.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Conformal Magnifier: A Focus+Context Technique with Minimal Distortion. Modified Dendrogram of High-dimensional Feature Space for Transfer Function Design. Illustrative Rendering Techniques for Visualization: Future of Visualization or Just Another Technique? The Visualization Process: The Path from Data to Insight Design and Evaluation in Visualization Research
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1