Daniel Hess, Ray Lattarulo, Joshué Pérez, T. Hesse, F. Köster
{"title":"自动驾驶车辆协同机动协商:实验结果","authors":"Daniel Hess, Ray Lattarulo, Joshué Pérez, T. Hesse, F. Köster","doi":"10.1109/ITSC.2019.8917464","DOIUrl":null,"url":null,"abstract":"When the number of automated vehicles (AVs) deployed in public traffic reaches a significant level, their form of interaction with other AVs, human controlled vehicles and non-motorized participants will impact traffic overall safety and efficiency. While many studies have approached impact analysis on the side of efficiency and via simulation, we here elaborate on practically applicable methods for safe cooperation of AVs from the perspective of life-size experimental platforms. In a previous publication, a message set for negotiation of such a cooperation has been proposed, space-time reservation procedure (STRP), which is compatible with the investigated verification approach. This publication follows up by providing results and analysis of test drives with two cooperating, automated vehicles with differing software and hardware architectures. The reservation messages are employed to negotiate a cooperative lane change via Vehicle-to-Vehicle radio in an urban scenario with non-trivial road-geometry. The applicability of the distributed cooperation scheme to real-world conditions is demonstrated.","PeriodicalId":6717,"journal":{"name":"2019 IEEE Intelligent Transportation Systems Conference (ITSC)","volume":"286 1","pages":"1545-1551"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Negotiation of Cooperative Maneuvers for Automated Vehicles: Experimental Results\",\"authors\":\"Daniel Hess, Ray Lattarulo, Joshué Pérez, T. Hesse, F. Köster\",\"doi\":\"10.1109/ITSC.2019.8917464\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When the number of automated vehicles (AVs) deployed in public traffic reaches a significant level, their form of interaction with other AVs, human controlled vehicles and non-motorized participants will impact traffic overall safety and efficiency. While many studies have approached impact analysis on the side of efficiency and via simulation, we here elaborate on practically applicable methods for safe cooperation of AVs from the perspective of life-size experimental platforms. In a previous publication, a message set for negotiation of such a cooperation has been proposed, space-time reservation procedure (STRP), which is compatible with the investigated verification approach. This publication follows up by providing results and analysis of test drives with two cooperating, automated vehicles with differing software and hardware architectures. The reservation messages are employed to negotiate a cooperative lane change via Vehicle-to-Vehicle radio in an urban scenario with non-trivial road-geometry. The applicability of the distributed cooperation scheme to real-world conditions is demonstrated.\",\"PeriodicalId\":6717,\"journal\":{\"name\":\"2019 IEEE Intelligent Transportation Systems Conference (ITSC)\",\"volume\":\"286 1\",\"pages\":\"1545-1551\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Intelligent Transportation Systems Conference (ITSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITSC.2019.8917464\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Intelligent Transportation Systems Conference (ITSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2019.8917464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Negotiation of Cooperative Maneuvers for Automated Vehicles: Experimental Results
When the number of automated vehicles (AVs) deployed in public traffic reaches a significant level, their form of interaction with other AVs, human controlled vehicles and non-motorized participants will impact traffic overall safety and efficiency. While many studies have approached impact analysis on the side of efficiency and via simulation, we here elaborate on practically applicable methods for safe cooperation of AVs from the perspective of life-size experimental platforms. In a previous publication, a message set for negotiation of such a cooperation has been proposed, space-time reservation procedure (STRP), which is compatible with the investigated verification approach. This publication follows up by providing results and analysis of test drives with two cooperating, automated vehicles with differing software and hardware architectures. The reservation messages are employed to negotiate a cooperative lane change via Vehicle-to-Vehicle radio in an urban scenario with non-trivial road-geometry. The applicability of the distributed cooperation scheme to real-world conditions is demonstrated.