Ravi Kumar Pandit, D. Astolfi, Jiarong Hong, D. Infield, Matilde Santos
{"title":"用于风力涡轮机数据驱动状态/性能监测的SCADA数据:现状、挑战和未来趋势综述","authors":"Ravi Kumar Pandit, D. Astolfi, Jiarong Hong, D. Infield, Matilde Santos","doi":"10.1177/0309524X221124031","DOIUrl":null,"url":null,"abstract":"This paper reviews the recent advancement made in data-driven technologies based on SCADA data for improving wind turbines’ operation and maintenance activities (e.g. condition monitoring, decision support, critical components failure detections) and the challenges associated with them. Machine learning techniques applied to wind turbines’ operation and maintenance (O&M) are reviewed. The data sources, feature engineering and model selection (classification, regression) and validation are all used to categorise these data-driven models. Our findings suggest that (a) most models use 10-minute mean SCADA data, though the use of high-resolution data has shown greater advantages as compared to 10-minute mean value but comes with high computational challenges. (b) Most of SCADA data are confidential and not available in the public domain which slows down technological advancements. (c) These datasets are used for both, the classification and regression of wind turbines but are used in classification extensively. And, (d) most commonly used data-driven models are neural networks, support vector machines, probabilistic models and decision trees and each of these models has its own merits and demerits. We conclude the paper by discussing the potential areas where SCADA data-based data-driven methodologies could be used in future wind energy research.","PeriodicalId":51570,"journal":{"name":"Wind Engineering","volume":"31 1","pages":"422 - 441"},"PeriodicalIF":1.5000,"publicationDate":"2022-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"SCADA data for wind turbine data-driven condition/performance monitoring: A review on state-of-art, challenges and future trends\",\"authors\":\"Ravi Kumar Pandit, D. Astolfi, Jiarong Hong, D. Infield, Matilde Santos\",\"doi\":\"10.1177/0309524X221124031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reviews the recent advancement made in data-driven technologies based on SCADA data for improving wind turbines’ operation and maintenance activities (e.g. condition monitoring, decision support, critical components failure detections) and the challenges associated with them. Machine learning techniques applied to wind turbines’ operation and maintenance (O&M) are reviewed. The data sources, feature engineering and model selection (classification, regression) and validation are all used to categorise these data-driven models. Our findings suggest that (a) most models use 10-minute mean SCADA data, though the use of high-resolution data has shown greater advantages as compared to 10-minute mean value but comes with high computational challenges. (b) Most of SCADA data are confidential and not available in the public domain which slows down technological advancements. (c) These datasets are used for both, the classification and regression of wind turbines but are used in classification extensively. And, (d) most commonly used data-driven models are neural networks, support vector machines, probabilistic models and decision trees and each of these models has its own merits and demerits. We conclude the paper by discussing the potential areas where SCADA data-based data-driven methodologies could be used in future wind energy research.\",\"PeriodicalId\":51570,\"journal\":{\"name\":\"Wind Engineering\",\"volume\":\"31 1\",\"pages\":\"422 - 441\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wind Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/0309524X221124031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wind Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/0309524X221124031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
SCADA data for wind turbine data-driven condition/performance monitoring: A review on state-of-art, challenges and future trends
This paper reviews the recent advancement made in data-driven technologies based on SCADA data for improving wind turbines’ operation and maintenance activities (e.g. condition monitoring, decision support, critical components failure detections) and the challenges associated with them. Machine learning techniques applied to wind turbines’ operation and maintenance (O&M) are reviewed. The data sources, feature engineering and model selection (classification, regression) and validation are all used to categorise these data-driven models. Our findings suggest that (a) most models use 10-minute mean SCADA data, though the use of high-resolution data has shown greater advantages as compared to 10-minute mean value but comes with high computational challenges. (b) Most of SCADA data are confidential and not available in the public domain which slows down technological advancements. (c) These datasets are used for both, the classification and regression of wind turbines but are used in classification extensively. And, (d) most commonly used data-driven models are neural networks, support vector machines, probabilistic models and decision trees and each of these models has its own merits and demerits. We conclude the paper by discussing the potential areas where SCADA data-based data-driven methodologies could be used in future wind energy research.
期刊介绍:
Having been in continuous publication since 1977, Wind Engineering is the oldest and most authoritative English language journal devoted entirely to the technology of wind energy. Under the direction of a distinguished editor and editorial board, Wind Engineering appears bimonthly with fully refereed contributions from active figures in the field, book notices, and summaries of the more interesting papers from other sources. Papers are published in Wind Engineering on: the aerodynamics of rotors and blades; machine subsystems and components; design; test programmes; power generation and transmission; measuring and recording techniques; installations and applications; and economic, environmental and legal aspects.