V. Kolesnyk, V. Orlyk, Yu.I. Khvastukhin, K. Kostohryz, V. Zhaivoronok
{"title":"在惰性物质的流化床中煅烧分散的石灰石。2. 数值模拟结果","authors":"V. Kolesnyk, V. Orlyk, Yu.I. Khvastukhin, K. Kostohryz, V. Zhaivoronok","doi":"10.33070/ETARS.1.2019.04","DOIUrl":null,"url":null,"abstract":"The results of numerical experiments concerning the process of calcination of small grained limestone particles in contact with the gas phase of a fluidized bed of inert grainy material for obtaining a high-performance sorbent are given. The character of the change of the basic qualitative parameters of the obtained sorbent – droopiness, surface area, mass is presented depending on the time of residence of the initial limestones with a diameter of 80–200 nm with initial porosity e0 = 0,03–0,1 and pore diameter dpor = 3,84–17 nm in the high-reaction zone when the temperature of the gas phase of the fluidized bed is changed within 900–1200 °С. The obtained results allow further in the design stage to determine the optimum hardware and process design of the process of calcination, depending on the initial parameters of the limestone, which will provide the desired quality of the limestone sorbent in accordance with the given power installation. Bibl. 1, Fig. 10.","PeriodicalId":11558,"journal":{"name":"Energy Technologies & Resource Saving","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CALCINATION OF FINELY DISPERSED LIMESTONE IN A FLUIDIZED BED OF INERT MATERIAL. 2. NUMERICAL SIMULATION RESULTS\",\"authors\":\"V. Kolesnyk, V. Orlyk, Yu.I. Khvastukhin, K. Kostohryz, V. Zhaivoronok\",\"doi\":\"10.33070/ETARS.1.2019.04\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The results of numerical experiments concerning the process of calcination of small grained limestone particles in contact with the gas phase of a fluidized bed of inert grainy material for obtaining a high-performance sorbent are given. The character of the change of the basic qualitative parameters of the obtained sorbent – droopiness, surface area, mass is presented depending on the time of residence of the initial limestones with a diameter of 80–200 nm with initial porosity e0 = 0,03–0,1 and pore diameter dpor = 3,84–17 nm in the high-reaction zone when the temperature of the gas phase of the fluidized bed is changed within 900–1200 °С. The obtained results allow further in the design stage to determine the optimum hardware and process design of the process of calcination, depending on the initial parameters of the limestone, which will provide the desired quality of the limestone sorbent in accordance with the given power installation. Bibl. 1, Fig. 10.\",\"PeriodicalId\":11558,\"journal\":{\"name\":\"Energy Technologies & Resource Saving\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Technologies & Resource Saving\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33070/ETARS.1.2019.04\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Technologies & Resource Saving","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33070/ETARS.1.2019.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
CALCINATION OF FINELY DISPERSED LIMESTONE IN A FLUIDIZED BED OF INERT MATERIAL. 2. NUMERICAL SIMULATION RESULTS
The results of numerical experiments concerning the process of calcination of small grained limestone particles in contact with the gas phase of a fluidized bed of inert grainy material for obtaining a high-performance sorbent are given. The character of the change of the basic qualitative parameters of the obtained sorbent – droopiness, surface area, mass is presented depending on the time of residence of the initial limestones with a diameter of 80–200 nm with initial porosity e0 = 0,03–0,1 and pore diameter dpor = 3,84–17 nm in the high-reaction zone when the temperature of the gas phase of the fluidized bed is changed within 900–1200 °С. The obtained results allow further in the design stage to determine the optimum hardware and process design of the process of calcination, depending on the initial parameters of the limestone, which will provide the desired quality of the limestone sorbent in accordance with the given power installation. Bibl. 1, Fig. 10.