用支持向量回归估计砂岩储层静态杨氏模量

A. Mahmoud, S. Elkatatny, D. A. Al Shehri
{"title":"用支持向量回归估计砂岩储层静态杨氏模量","authors":"A. Mahmoud, S. Elkatatny, D. A. Al Shehri","doi":"10.2523/iptc-22071-ms","DOIUrl":null,"url":null,"abstract":"\n The static Young's Modulus (Estatic) is an important parameter affecting the design of different aspects related to oil and gas producing wells. It is significantly changing based on the type of the formation, and hence, an accurate method of identifying Estatic is required. This study evaluates the performance of support vector regression (SVR) for prediction of the Estatic. The SVR model was learned to evaluate the Estatic from the well logs of the bulk formation density in addition to compressional and shear transit time. It was learned and tested on 592 training datasets of the inputs and their corresponding Estatic, these datasets were obtained from a sandstone formation in Well-A. The learned SVR model was then validated on 38 data points from Well-B, the performance of the optimized SVR on predicting the Estatic for the validation data was also compared with these of the early optimized artificial neural networks (ANN) and functional neural networks (FNN). As a result, all machine learning models showed high precision in predicting the Estatic for the validation data where Estatic was estimated with average absolute percentage errors of 3.80%, 2.54, and 2.03% and correlation coefficients of 0.991, 0.997, and 0.999 using the optimized ANN, FNN, and SVR models, respectively. This result shows the high accuracy of the SVR on predicting the Estatic.","PeriodicalId":11027,"journal":{"name":"Day 3 Wed, February 23, 2022","volume":"78 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Estimation of the Static Young's Modulus for Sandstone Reservoirs Using Support Vector Regression\",\"authors\":\"A. Mahmoud, S. Elkatatny, D. A. Al Shehri\",\"doi\":\"10.2523/iptc-22071-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The static Young's Modulus (Estatic) is an important parameter affecting the design of different aspects related to oil and gas producing wells. It is significantly changing based on the type of the formation, and hence, an accurate method of identifying Estatic is required. This study evaluates the performance of support vector regression (SVR) for prediction of the Estatic. The SVR model was learned to evaluate the Estatic from the well logs of the bulk formation density in addition to compressional and shear transit time. It was learned and tested on 592 training datasets of the inputs and their corresponding Estatic, these datasets were obtained from a sandstone formation in Well-A. The learned SVR model was then validated on 38 data points from Well-B, the performance of the optimized SVR on predicting the Estatic for the validation data was also compared with these of the early optimized artificial neural networks (ANN) and functional neural networks (FNN). As a result, all machine learning models showed high precision in predicting the Estatic for the validation data where Estatic was estimated with average absolute percentage errors of 3.80%, 2.54, and 2.03% and correlation coefficients of 0.991, 0.997, and 0.999 using the optimized ANN, FNN, and SVR models, respectively. This result shows the high accuracy of the SVR on predicting the Estatic.\",\"PeriodicalId\":11027,\"journal\":{\"name\":\"Day 3 Wed, February 23, 2022\",\"volume\":\"78 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 3 Wed, February 23, 2022\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2523/iptc-22071-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Wed, February 23, 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2523/iptc-22071-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

静态杨氏模量(static)是影响油气井各方面设计的重要参数。根据地层类型的不同,它会发生很大的变化,因此需要一种准确的识别静井的方法。本研究评估了支持向量回归(SVR)在预测静态变量方面的性能。学习了SVR模型,利用体积地层密度的测井资料,结合压缩和剪切传递时间,对静载荷进行了评价。该方法在592个训练数据集上进行了学习和测试,这些数据集来自a井的砂岩地层。将学习到的SVR模型在Well-B的38个数据点上进行了验证,并与早期优化的人工神经网络(ANN)和功能神经网络(FNN)对验证数据的预测效果进行了比较。结果表明,所有机器学习模型对验证数据的预测精度都很高,其中使用优化后的ANN、FNN和SVR模型估计的Estatic的平均绝对百分比误差分别为3.80%、2.54和2.03%,相关系数分别为0.991、0.997和0.999。结果表明,该方法对静校正量具有较高的预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Estimation of the Static Young's Modulus for Sandstone Reservoirs Using Support Vector Regression
The static Young's Modulus (Estatic) is an important parameter affecting the design of different aspects related to oil and gas producing wells. It is significantly changing based on the type of the formation, and hence, an accurate method of identifying Estatic is required. This study evaluates the performance of support vector regression (SVR) for prediction of the Estatic. The SVR model was learned to evaluate the Estatic from the well logs of the bulk formation density in addition to compressional and shear transit time. It was learned and tested on 592 training datasets of the inputs and their corresponding Estatic, these datasets were obtained from a sandstone formation in Well-A. The learned SVR model was then validated on 38 data points from Well-B, the performance of the optimized SVR on predicting the Estatic for the validation data was also compared with these of the early optimized artificial neural networks (ANN) and functional neural networks (FNN). As a result, all machine learning models showed high precision in predicting the Estatic for the validation data where Estatic was estimated with average absolute percentage errors of 3.80%, 2.54, and 2.03% and correlation coefficients of 0.991, 0.997, and 0.999 using the optimized ANN, FNN, and SVR models, respectively. This result shows the high accuracy of the SVR on predicting the Estatic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Data Driven Method to Predict and Restore Missing Well Head Flow Pressure Downhole Camera Run Validates Limited Entry Fracturing Technique and Improves Pay Coverage in Deep Tight Laminated Gas Reservoir of Western India An Experimental Investigation of the Effect of Oil/Gas Composition on the Performance of Carbonated Water Injection CWI SmartPoint Seismic Data Acquisition System Reservoir Characterization for Isolated Porosity from Multi-Frequency Dielectric Measurements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1