基于贝叶斯方法的高速公路交通安全分析及模型更新

IF 2.4 3区 工程技术 Q3 TRANSPORTATION Journal of Transportation Safety & Security Pub Date : 2022-10-03 DOI:10.1080/19439962.2022.2128957
Xuesong Wang, Qi Zhang, Xiaohan Yang, Yingying Pei, Jinghui Yuan
{"title":"基于贝叶斯方法的高速公路交通安全分析及模型更新","authors":"Xuesong Wang, Qi Zhang, Xiaohan Yang, Yingying Pei, Jinghui Yuan","doi":"10.1080/19439962.2022.2128957","DOIUrl":null,"url":null,"abstract":"Abstract Freeway crash prediction models are the basic of traffic safety research, yet crash occurrence and the influencing factors change over time. In order to make sure the implemented safety models fit the current traffic environment, this study conducts a comparative analysis of 2017 and 2020 datasets collected from freeways in Suzhou, China. Considering the spatial correlation among analysis units and the hierarchical data structure, a Bayesian conditional autoregressive negative binomial (CAR-NB) model and a Bayesian hierarchical CAR-NB (HCAR-NB) model were used to explore the safety influencing factors, and a traditional NB model was developed for further comparison. To update the HCAR-NB model from 2017 to 2020, Bayesian inference with informative priors was used to improve its goodness of fit and efficiency. Preliminary results showed that 1) the HCAR-NB model outperformed the NB model and CAR-NB model in prediction accuracy, and 2) the number of crashes was significantly correlated with average speed, speed variance, road segment length, number of lanes, and presence of ramps. The potential for safety improvement (PSI) method was applied to the modeling results to identify hotspots for the two years. The results confirmed that the hotspots spatiotemporally shifted among the freeways. The proposed crash prediction model and updating method are expected to assist implementation of informed countermeasures for freeway safety improvement.","PeriodicalId":46672,"journal":{"name":"Journal of Transportation Safety & Security","volume":"201 1","pages":"737 - 759"},"PeriodicalIF":2.4000,"publicationDate":"2022-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Traffic safety analysis and model updating for freeways using Bayesian method\",\"authors\":\"Xuesong Wang, Qi Zhang, Xiaohan Yang, Yingying Pei, Jinghui Yuan\",\"doi\":\"10.1080/19439962.2022.2128957\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Freeway crash prediction models are the basic of traffic safety research, yet crash occurrence and the influencing factors change over time. In order to make sure the implemented safety models fit the current traffic environment, this study conducts a comparative analysis of 2017 and 2020 datasets collected from freeways in Suzhou, China. Considering the spatial correlation among analysis units and the hierarchical data structure, a Bayesian conditional autoregressive negative binomial (CAR-NB) model and a Bayesian hierarchical CAR-NB (HCAR-NB) model were used to explore the safety influencing factors, and a traditional NB model was developed for further comparison. To update the HCAR-NB model from 2017 to 2020, Bayesian inference with informative priors was used to improve its goodness of fit and efficiency. Preliminary results showed that 1) the HCAR-NB model outperformed the NB model and CAR-NB model in prediction accuracy, and 2) the number of crashes was significantly correlated with average speed, speed variance, road segment length, number of lanes, and presence of ramps. The potential for safety improvement (PSI) method was applied to the modeling results to identify hotspots for the two years. The results confirmed that the hotspots spatiotemporally shifted among the freeways. The proposed crash prediction model and updating method are expected to assist implementation of informed countermeasures for freeway safety improvement.\",\"PeriodicalId\":46672,\"journal\":{\"name\":\"Journal of Transportation Safety & Security\",\"volume\":\"201 1\",\"pages\":\"737 - 759\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2022-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Transportation Safety & Security\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/19439962.2022.2128957\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TRANSPORTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Transportation Safety & Security","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/19439962.2022.2128957","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 2

摘要

高速公路碰撞预测模型是交通安全研究的基础,但碰撞发生及其影响因素是随时间变化的。为了确保实施的安全模型符合当前的交通环境,本研究对2017年和2020年在中国苏州高速公路收集的数据集进行了比较分析。考虑到分析单元之间的空间相关性和分层数据结构,采用贝叶斯条件自回归负二项(CAR-NB)模型和贝叶斯分层CAR-NB (HCAR-NB)模型探索安全影响因素,并建立传统NB模型进行比较。为了对2017 - 2020年的HCAR-NB模型进行更新,采用信息先验贝叶斯推理提高模型的拟合优度和效率。初步结果表明:1)HCAR-NB模型在预测精度上优于NB模型和CAR-NB模型;2)碰撞数量与平均速度、速度方差、路段长度、车道数和匝道存在显著相关。将安全改进潜力(PSI)方法应用于建模结果,以识别两年的热点。结果证实了热点在高速公路之间的时空转移。所提出的碰撞预测模型和更新方法有望帮助实施明智的对策,以改善高速公路的安全。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Traffic safety analysis and model updating for freeways using Bayesian method
Abstract Freeway crash prediction models are the basic of traffic safety research, yet crash occurrence and the influencing factors change over time. In order to make sure the implemented safety models fit the current traffic environment, this study conducts a comparative analysis of 2017 and 2020 datasets collected from freeways in Suzhou, China. Considering the spatial correlation among analysis units and the hierarchical data structure, a Bayesian conditional autoregressive negative binomial (CAR-NB) model and a Bayesian hierarchical CAR-NB (HCAR-NB) model were used to explore the safety influencing factors, and a traditional NB model was developed for further comparison. To update the HCAR-NB model from 2017 to 2020, Bayesian inference with informative priors was used to improve its goodness of fit and efficiency. Preliminary results showed that 1) the HCAR-NB model outperformed the NB model and CAR-NB model in prediction accuracy, and 2) the number of crashes was significantly correlated with average speed, speed variance, road segment length, number of lanes, and presence of ramps. The potential for safety improvement (PSI) method was applied to the modeling results to identify hotspots for the two years. The results confirmed that the hotspots spatiotemporally shifted among the freeways. The proposed crash prediction model and updating method are expected to assist implementation of informed countermeasures for freeway safety improvement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.00
自引率
15.40%
发文量
38
期刊最新文献
Examining the crash risk factors associated with cycling by considering spatial and temporal disaggregation of exposure: Findings from four Dutch cities Traffic safety performance evaluation in a connected vehicle environment with queue warning and speed harmonization applications Enhancing bicyclist survival time in fatal crashes: Investigating the impact of faster crash notification time through explainable machine learning Factors affecting pedestrian injury severity in pedestrian-vehicle crashes: Insights from a data mining and mixed logit model approach Prediction of high-risk bus drivers characterized by aggressive driving behavior
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1