Rafael Yuji Hirata Furusho, Francisco Assis da Silva, Leandro Luiz de Almeida, Danillo Roberto Pereira, Mário Augusto Pazoti, A. O. Artero, M. A. Piteri
{"title":"卷积神经网络在日本信息板字符识别中的应用","authors":"Rafael Yuji Hirata Furusho, Francisco Assis da Silva, Leandro Luiz de Almeida, Danillo Roberto Pereira, Mário Augusto Pazoti, A. O. Artero, M. A. Piteri","doi":"10.5747/ce.2021.v13.n2.e355","DOIUrl":null,"url":null,"abstract":"Unlike most Western countries, which have a Latin-derived base alphabet, Japan has two syllabic alphabets called Hiragana and Katakana, and a Chinese alphabet, called Kanji. The vast differences in the writing of these Eastern alphabets to Western alphabets, Western alphabet-based OCR algorithms tend not to efficiently detect Japanese characters. This work contributes to a methodology applying digital image processing techniques, such as color range-based segmentation, edge detection and mathematical morphology techniques, to detect Japanese traffic informationalplates correctly the perspective and segment the characters contained in it. A convolutional neural network wasused to perform the classification of Hiragana characters contained in the segmented plates, withaccuracyof 94.37%.","PeriodicalId":30414,"journal":{"name":"Colloquium Exactarum","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"APLICAÇÃO DE REDES NEURAIS CONVOLUCIONAIS NO RECONHECIMENTO DE CARACTERES EM PLACAS INFORMATIVAS JAPONESAS\",\"authors\":\"Rafael Yuji Hirata Furusho, Francisco Assis da Silva, Leandro Luiz de Almeida, Danillo Roberto Pereira, Mário Augusto Pazoti, A. O. Artero, M. A. Piteri\",\"doi\":\"10.5747/ce.2021.v13.n2.e355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unlike most Western countries, which have a Latin-derived base alphabet, Japan has two syllabic alphabets called Hiragana and Katakana, and a Chinese alphabet, called Kanji. The vast differences in the writing of these Eastern alphabets to Western alphabets, Western alphabet-based OCR algorithms tend not to efficiently detect Japanese characters. This work contributes to a methodology applying digital image processing techniques, such as color range-based segmentation, edge detection and mathematical morphology techniques, to detect Japanese traffic informationalplates correctly the perspective and segment the characters contained in it. A convolutional neural network wasused to perform the classification of Hiragana characters contained in the segmented plates, withaccuracyof 94.37%.\",\"PeriodicalId\":30414,\"journal\":{\"name\":\"Colloquium Exactarum\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloquium Exactarum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5747/ce.2021.v13.n2.e355\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloquium Exactarum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5747/ce.2021.v13.n2.e355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
APLICAÇÃO DE REDES NEURAIS CONVOLUCIONAIS NO RECONHECIMENTO DE CARACTERES EM PLACAS INFORMATIVAS JAPONESAS
Unlike most Western countries, which have a Latin-derived base alphabet, Japan has two syllabic alphabets called Hiragana and Katakana, and a Chinese alphabet, called Kanji. The vast differences in the writing of these Eastern alphabets to Western alphabets, Western alphabet-based OCR algorithms tend not to efficiently detect Japanese characters. This work contributes to a methodology applying digital image processing techniques, such as color range-based segmentation, edge detection and mathematical morphology techniques, to detect Japanese traffic informationalplates correctly the perspective and segment the characters contained in it. A convolutional neural network wasused to perform the classification of Hiragana characters contained in the segmented plates, withaccuracyof 94.37%.