动态环境下基于人工免疫的移动机器人实时全局最优路径规划

A. Eslami, S. Asadi, .. G.R.Soleymani, V. Azimirad
{"title":"动态环境下基于人工免疫的移动机器人实时全局最优路径规划","authors":"A. Eslami, S. Asadi, .. G.R.Soleymani, V. Azimirad","doi":"10.1037/e527372013-016","DOIUrl":null,"url":null,"abstract":"This paper illustrates a method to finding a global optimal path in a dynamic environment of known obstacles for an Mobile Robot (MR) to following a moving target. Firstly, the environment is defined by using a practical and standard graph theory. Then, a suboptimal path is obtained by using Dijkstra Algorithm (DA) that is a standard graph searching method. The advantages of using DA are; elimination the uncertainness of heuristic algorithms and increasing the speed, precision and performance of them. Finally, Continuous Clonal Selection Algorithm (CCSA) that is combined with Negative Selection Algorithm (NSA) is used to improve the suboptimal path and derive global optimal path. To show the effectiveness of the method it is compared with some other methods in this area.","PeriodicalId":91079,"journal":{"name":"GSTF international journal on computing","volume":"91 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A Real-time Global Optimal Path Planning for mobile robot in Dynamic Environment Based on Artificial Immune Approach\",\"authors\":\"A. Eslami, S. Asadi, .. G.R.Soleymani, V. Azimirad\",\"doi\":\"10.1037/e527372013-016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper illustrates a method to finding a global optimal path in a dynamic environment of known obstacles for an Mobile Robot (MR) to following a moving target. Firstly, the environment is defined by using a practical and standard graph theory. Then, a suboptimal path is obtained by using Dijkstra Algorithm (DA) that is a standard graph searching method. The advantages of using DA are; elimination the uncertainness of heuristic algorithms and increasing the speed, precision and performance of them. Finally, Continuous Clonal Selection Algorithm (CCSA) that is combined with Negative Selection Algorithm (NSA) is used to improve the suboptimal path and derive global optimal path. To show the effectiveness of the method it is compared with some other methods in this area.\",\"PeriodicalId\":91079,\"journal\":{\"name\":\"GSTF international journal on computing\",\"volume\":\"91 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GSTF international journal on computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1037/e527372013-016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GSTF international journal on computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1037/e527372013-016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文给出了一种移动机器人在已知障碍物的动态环境下跟踪运动目标的全局最优路径求解方法。首先,用实用的标准图论定义了环境。然后,使用标准图搜索方法Dijkstra算法(DA)获得次优路径。使用数据处理的优点有:消除了启发式算法的不确定性,提高了启发式算法的速度、精度和性能。最后,将连续克隆选择算法(CCSA)与负选择算法(NSA)相结合,对次优路径进行改进,得到全局最优路径。为了证明该方法的有效性,将其与该领域的其他方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Real-time Global Optimal Path Planning for mobile robot in Dynamic Environment Based on Artificial Immune Approach
This paper illustrates a method to finding a global optimal path in a dynamic environment of known obstacles for an Mobile Robot (MR) to following a moving target. Firstly, the environment is defined by using a practical and standard graph theory. Then, a suboptimal path is obtained by using Dijkstra Algorithm (DA) that is a standard graph searching method. The advantages of using DA are; elimination the uncertainness of heuristic algorithms and increasing the speed, precision and performance of them. Finally, Continuous Clonal Selection Algorithm (CCSA) that is combined with Negative Selection Algorithm (NSA) is used to improve the suboptimal path and derive global optimal path. To show the effectiveness of the method it is compared with some other methods in this area.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cognitive Computing supported Medical Decision Support System for Patient’s Driving Assessment Propaganda Barometer : A Supportive Tool to Improve Media Literacy Towards Building a Critically Thinking Society A framework for the adoption of bring your own device (BYOD) in the hospital environment On developing adaptive vocabulary learning game for children with an early language delay Stroke Cognitive Medical Assistant (StrokeCMA)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1