{"title":"基于深度非负自编码器的主题扩散发现","authors":"Sheng-Tai Huang, Yihuang Kang, Shao-Min Hung, Bowen Kuo, I-Ling Cheng","doi":"10.1109/IRI49571.2020.00067","DOIUrl":null,"url":null,"abstract":"Researchers have been overwhelmed by the explosion of research articles published by various research communities. Many research scholarly websites, search engines, and digital libraries have been created to help researchers identify potential research topics and keep up with recent progress on research of interests. However, it is still difficult for researchers to keep track of the research topic diffusion and evolution without spending a large amount of time reviewing numerous relevant and irrelevant articles. In this paper, we consider a novel topic diffusion discovery technique. Specifically, we propose using a Deep Non-negative Autoencoder with information divergence measurement that monitors evolutionary distance of the topic diffusion to understand how research topics change with time. The experimental results show that the proposed approach is able to identify the evolution of research topics as well as to discover topic diffusions in online fashions.","PeriodicalId":93159,"journal":{"name":"2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science : IRI 2020 : proceedings : virtual conference, 11-13 August 2020. IEEE International Conference on Information Reuse and Integration (21st : 2...","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Topic Diffusion Discovery based on Deep Non-negative Autoencoder\",\"authors\":\"Sheng-Tai Huang, Yihuang Kang, Shao-Min Hung, Bowen Kuo, I-Ling Cheng\",\"doi\":\"10.1109/IRI49571.2020.00067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Researchers have been overwhelmed by the explosion of research articles published by various research communities. Many research scholarly websites, search engines, and digital libraries have been created to help researchers identify potential research topics and keep up with recent progress on research of interests. However, it is still difficult for researchers to keep track of the research topic diffusion and evolution without spending a large amount of time reviewing numerous relevant and irrelevant articles. In this paper, we consider a novel topic diffusion discovery technique. Specifically, we propose using a Deep Non-negative Autoencoder with information divergence measurement that monitors evolutionary distance of the topic diffusion to understand how research topics change with time. The experimental results show that the proposed approach is able to identify the evolution of research topics as well as to discover topic diffusions in online fashions.\",\"PeriodicalId\":93159,\"journal\":{\"name\":\"2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science : IRI 2020 : proceedings : virtual conference, 11-13 August 2020. IEEE International Conference on Information Reuse and Integration (21st : 2...\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science : IRI 2020 : proceedings : virtual conference, 11-13 August 2020. IEEE International Conference on Information Reuse and Integration (21st : 2...\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRI49571.2020.00067\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science : IRI 2020 : proceedings : virtual conference, 11-13 August 2020. IEEE International Conference on Information Reuse and Integration (21st : 2...","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI49571.2020.00067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Topic Diffusion Discovery based on Deep Non-negative Autoencoder
Researchers have been overwhelmed by the explosion of research articles published by various research communities. Many research scholarly websites, search engines, and digital libraries have been created to help researchers identify potential research topics and keep up with recent progress on research of interests. However, it is still difficult for researchers to keep track of the research topic diffusion and evolution without spending a large amount of time reviewing numerous relevant and irrelevant articles. In this paper, we consider a novel topic diffusion discovery technique. Specifically, we propose using a Deep Non-negative Autoencoder with information divergence measurement that monitors evolutionary distance of the topic diffusion to understand how research topics change with time. The experimental results show that the proposed approach is able to identify the evolution of research topics as well as to discover topic diffusions in online fashions.