{"title":"DenseNetX和GRU为sussexhuawei移动运输识别挑战","authors":"Yida Zhu, Haiyong Luo, Runze Chen, Fang Zhao, Li Su","doi":"10.1145/3410530.3414349","DOIUrl":null,"url":null,"abstract":"The Sussex-Huawei Locomotion-Transportation (SHL) recognition challenge organized at the HASCA Workshop of UbiComp 2020 presents a large and realistic dataset with different activities and transportation. The goal of this human activity recognition challenge is to recognize eight modes of locomotion and transportation from 5-second frames of sensor data of a smartphone carried in the unknown position. In this paper, our team (We can fly) summarize our submission to the competition. We proposed a one-dimensional (1D) DenseNetX model, a deep learning method for transportation mode classification. We first convert sensor readings from the phone coordinate system to the navigation coordinate system. Then, we normalized each sensor using different maximums and minimums and construct multi-channel sensor input. Finally, 1D DenseNetX with the Gated Recurrent Unit (GRU) model output the predictions. In the experiment, we utilized four internal datasets for training our model and achieved averaged F1 score of 0.7848 on four valid datasets.","PeriodicalId":7183,"journal":{"name":"Adjunct Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable Computers","volume":"49 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"DenseNetX and GRU for the sussex-huawei locomotion-transportation recognition challenge\",\"authors\":\"Yida Zhu, Haiyong Luo, Runze Chen, Fang Zhao, Li Su\",\"doi\":\"10.1145/3410530.3414349\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Sussex-Huawei Locomotion-Transportation (SHL) recognition challenge organized at the HASCA Workshop of UbiComp 2020 presents a large and realistic dataset with different activities and transportation. The goal of this human activity recognition challenge is to recognize eight modes of locomotion and transportation from 5-second frames of sensor data of a smartphone carried in the unknown position. In this paper, our team (We can fly) summarize our submission to the competition. We proposed a one-dimensional (1D) DenseNetX model, a deep learning method for transportation mode classification. We first convert sensor readings from the phone coordinate system to the navigation coordinate system. Then, we normalized each sensor using different maximums and minimums and construct multi-channel sensor input. Finally, 1D DenseNetX with the Gated Recurrent Unit (GRU) model output the predictions. In the experiment, we utilized four internal datasets for training our model and achieved averaged F1 score of 0.7848 on four valid datasets.\",\"PeriodicalId\":7183,\"journal\":{\"name\":\"Adjunct Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable Computers\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Adjunct Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3410530.3414349\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adjunct Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3410530.3414349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

在UbiComp 2020的HASCA研讨会上组织的sussexhuawei Locomotion-Transportation (SHL)识别挑战展示了一个具有不同活动和运输的大型真实数据集。这项人类活动识别挑战的目标是从未知位置携带的智能手机的5秒传感器数据帧中识别出八种运动和运输模式。在这篇论文中,我们的团队(我们可以飞)总结了我们的参赛作品。我们提出了一种一维(1D) DenseNetX模型,这是一种用于交通方式分类的深度学习方法。我们首先将传感器读数从手机坐标系转换为导航坐标系。然后,我们使用不同的最大值和最小值对每个传感器进行归一化,并构建多通道传感器输入。最后,使用门控循环单元(GRU)模型的1D DenseNetX输出预测结果。在实验中,我们使用了4个内部数据集来训练我们的模型,在4个有效数据集上获得了平均F1分数0.7848。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DenseNetX and GRU for the sussex-huawei locomotion-transportation recognition challenge
The Sussex-Huawei Locomotion-Transportation (SHL) recognition challenge organized at the HASCA Workshop of UbiComp 2020 presents a large and realistic dataset with different activities and transportation. The goal of this human activity recognition challenge is to recognize eight modes of locomotion and transportation from 5-second frames of sensor data of a smartphone carried in the unknown position. In this paper, our team (We can fly) summarize our submission to the competition. We proposed a one-dimensional (1D) DenseNetX model, a deep learning method for transportation mode classification. We first convert sensor readings from the phone coordinate system to the navigation coordinate system. Then, we normalized each sensor using different maximums and minimums and construct multi-channel sensor input. Finally, 1D DenseNetX with the Gated Recurrent Unit (GRU) model output the predictions. In the experiment, we utilized four internal datasets for training our model and achieved averaged F1 score of 0.7848 on four valid datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Using gamification to create and label photos that are challenging for computer vision and people Pose evaluation for dance learning application using joint position and angular similarity SParking: a win-win data-driven contract parking sharing system HeadgearX Blink rate variability: a marker of sustained attention during a visual task
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1