不匹配Ca2Co2O5氧化物材料的应力驱动演化:从几何到电子态

IF 1.5 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER Advances in Condensed Matter Physics Pub Date : 2021-05-11 DOI:10.1155/2021/5538056
F. P. Zhang, Y. Sun, G. Zhang, X. Shi, G. Qin
{"title":"不匹配Ca2Co2O5氧化物材料的应力驱动演化:从几何到电子态","authors":"F. P. Zhang, Y. Sun, G. Zhang, X. Shi, G. Qin","doi":"10.1155/2021/5538056","DOIUrl":null,"url":null,"abstract":"The geometrical structures, phase stabilities, electron energy band structures, electron density of states, and atom recombination together with the electron conduction behaviors of the sandwiched Ca2Co2O5 with external stress of 1 GPa are intensively studied by the density functional theory method. The studying results show that the symmetry remains undisturbed; the strain to the stress response is anisotropic. The strain of microarchitecture induced by external stress is also anisotropic. There is stronger covalent binding between Co and O. The binding between Co and O within CdI2 like CoO2 is very much even covalent, and it is weakened under external stress. But the covalent Co-O binding within the rock salt like CaCoO layer is enhanced. The Ca-O binding strength is insensitive to external stress. An energy gap of 0.1 eV below Fermi level for the spin-up electron band disappears, and the two energy gaps are narrowed for the spin-down electron bands. The p orbital electrons form primarily the bands below Fermi level and the d orbital electrons form primarily the bands above Fermi level. The transitions from p orbital electrons to d orbital electrons produce the conduction. The CdI2 like CoO2 layer has been enhanced in terms of participating in the conduction properties with external stress of 1 GPa, and the capability of Co is enhanced while the capability of O is decreased.","PeriodicalId":7382,"journal":{"name":"Advances in Condensed Matter Physics","volume":"112 1","pages":"1-11"},"PeriodicalIF":1.5000,"publicationDate":"2021-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stress-Driven Evolution on Mismatched Ca2Co2O5 Oxide Material: From Geometry to the Electronic States\",\"authors\":\"F. P. Zhang, Y. Sun, G. Zhang, X. Shi, G. Qin\",\"doi\":\"10.1155/2021/5538056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The geometrical structures, phase stabilities, electron energy band structures, electron density of states, and atom recombination together with the electron conduction behaviors of the sandwiched Ca2Co2O5 with external stress of 1 GPa are intensively studied by the density functional theory method. The studying results show that the symmetry remains undisturbed; the strain to the stress response is anisotropic. The strain of microarchitecture induced by external stress is also anisotropic. There is stronger covalent binding between Co and O. The binding between Co and O within CdI2 like CoO2 is very much even covalent, and it is weakened under external stress. But the covalent Co-O binding within the rock salt like CaCoO layer is enhanced. The Ca-O binding strength is insensitive to external stress. An energy gap of 0.1 eV below Fermi level for the spin-up electron band disappears, and the two energy gaps are narrowed for the spin-down electron bands. The p orbital electrons form primarily the bands below Fermi level and the d orbital electrons form primarily the bands above Fermi level. The transitions from p orbital electrons to d orbital electrons produce the conduction. The CdI2 like CoO2 layer has been enhanced in terms of participating in the conduction properties with external stress of 1 GPa, and the capability of Co is enhanced while the capability of O is decreased.\",\"PeriodicalId\":7382,\"journal\":{\"name\":\"Advances in Condensed Matter Physics\",\"volume\":\"112 1\",\"pages\":\"1-11\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Condensed Matter Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1155/2021/5538056\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Condensed Matter Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2021/5538056","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

采用密度泛函理论方法,研究了外应力为1 GPa的夹心Ca2Co2O5的几何结构、相稳定性、电子能带结构、态电子密度、原子复合以及电子传导行为。研究结果表明,对称不受干扰;应变对应力响应是各向异性的。外应力引起的微结构应变也是各向异性的。Co和O之间的共价结合更强,CdI2内部Co和O之间的结合与CoO2一样是非常均匀的共价结合,在外界胁迫下会减弱。但在岩盐层内,共价Co-O结合增强。Ca-O结合强度对外界应力不敏感。向上自旋电子带在费米能级以下0.1 eV的能隙消失,向下自旋电子带的能隙缩小。p轨道电子主要形成费米能级以下的能带,d轨道电子主要形成费米能级以上的能带。从p轨道电子到d轨道电子的跃迁产生了传导。在1 GPa的外应力作用下,CdI2和CoO2层参与导电性能得到增强,Co的能力增强,O的能力下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stress-Driven Evolution on Mismatched Ca2Co2O5 Oxide Material: From Geometry to the Electronic States
The geometrical structures, phase stabilities, electron energy band structures, electron density of states, and atom recombination together with the electron conduction behaviors of the sandwiched Ca2Co2O5 with external stress of 1 GPa are intensively studied by the density functional theory method. The studying results show that the symmetry remains undisturbed; the strain to the stress response is anisotropic. The strain of microarchitecture induced by external stress is also anisotropic. There is stronger covalent binding between Co and O. The binding between Co and O within CdI2 like CoO2 is very much even covalent, and it is weakened under external stress. But the covalent Co-O binding within the rock salt like CaCoO layer is enhanced. The Ca-O binding strength is insensitive to external stress. An energy gap of 0.1 eV below Fermi level for the spin-up electron band disappears, and the two energy gaps are narrowed for the spin-down electron bands. The p orbital electrons form primarily the bands below Fermi level and the d orbital electrons form primarily the bands above Fermi level. The transitions from p orbital electrons to d orbital electrons produce the conduction. The CdI2 like CoO2 layer has been enhanced in terms of participating in the conduction properties with external stress of 1 GPa, and the capability of Co is enhanced while the capability of O is decreased.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Condensed Matter Physics
Advances in Condensed Matter Physics PHYSICS, CONDENSED MATTER-
CiteScore
2.30
自引率
0.00%
发文量
33
审稿时长
6-12 weeks
期刊介绍: Advances in Condensed Matter Physics publishes articles on the experimental and theoretical study of the physics of materials in solid, liquid, amorphous, and exotic states. Papers consider the quantum, classical, and statistical mechanics of materials; their structure, dynamics, and phase transitions; and their magnetic, electronic, thermal, and optical properties. Submission of original research, and focused review articles, is welcomed from researchers from across the entire condensed matter physics community.
期刊最新文献
The Effect of Pressure Variations on the Electronic Structure, Phonon, and Superconducting Properties of Yttrium Hydrogen Selenide Compound The Optimal Doping Ratio of Fe2O3 for Enhancing the Electrochemical Stability of Zeolitic Imidazolate Framework-8 for Energy Storage Devices Electron Transport Properties of Eu(Cu1 − xAgx)2Si2 (0 ≤ x ≤ 1): Initiation of Transition Eu2+ ↔ Eu2.41+ in the Intermediate Valence State Effect of Tunable Dielectric Core on Optical Bistability in Cylindrical Core–Shell Nanocomposites A Canonical Transformation for the Anderson Lattice Hamiltonian with f–f Electron Coupling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1