{"title":"子带隙态的载流子脱陷:用超快泵浦-探针光谱揭示的InGaN/GaN体系的新机制","authors":"Tarni Aggarwal, S. Ganguly, D. Saha","doi":"10.1109/PN52152.2021.9598002","DOIUrl":null,"url":null,"abstract":"Sub-bandgap states in GaN-based quantum confined structures are not always disadvantageous for efficient light emission. A novel intrinsic mechanism of carrier recovery from sub-bandgap states through Coulombic interaction is proven. Indium inhomogeneity is established as carrier reservoirs that can hold carriers for future recombination. There is a finite probability of electron de-trapping from these states, instead of recombining through opposite charge.","PeriodicalId":6789,"journal":{"name":"2021 Photonics North (PN)","volume":"38 1","pages":"1-1"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carrier De-trapping from the Sub-bandgap States: A novel mechanism in InGaN/GaN systems manifested by ultrafast pump-probe spectroscopy\",\"authors\":\"Tarni Aggarwal, S. Ganguly, D. Saha\",\"doi\":\"10.1109/PN52152.2021.9598002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sub-bandgap states in GaN-based quantum confined structures are not always disadvantageous for efficient light emission. A novel intrinsic mechanism of carrier recovery from sub-bandgap states through Coulombic interaction is proven. Indium inhomogeneity is established as carrier reservoirs that can hold carriers for future recombination. There is a finite probability of electron de-trapping from these states, instead of recombining through opposite charge.\",\"PeriodicalId\":6789,\"journal\":{\"name\":\"2021 Photonics North (PN)\",\"volume\":\"38 1\",\"pages\":\"1-1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Photonics North (PN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PN52152.2021.9598002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Photonics North (PN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PN52152.2021.9598002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Carrier De-trapping from the Sub-bandgap States: A novel mechanism in InGaN/GaN systems manifested by ultrafast pump-probe spectroscopy
Sub-bandgap states in GaN-based quantum confined structures are not always disadvantageous for efficient light emission. A novel intrinsic mechanism of carrier recovery from sub-bandgap states through Coulombic interaction is proven. Indium inhomogeneity is established as carrier reservoirs that can hold carriers for future recombination. There is a finite probability of electron de-trapping from these states, instead of recombining through opposite charge.