导流对NACA 0012型翼型噪声和气动性能影响的实验与数值研究

Hussein K. Mohammad, S. Jali, Arz Qwam Alden, V. Kilchyk, B. Shrestha
{"title":"导流对NACA 0012型翼型噪声和气动性能影响的实验与数值研究","authors":"Hussein K. Mohammad, S. Jali, Arz Qwam Alden, V. Kilchyk, B. Shrestha","doi":"10.24084/repqj21.328","DOIUrl":null,"url":null,"abstract":"Wind power is considered one of the main sources of renewable energy in the market today. In this study, different sizes and directions of channels were created inside the NACA 0012 aerofoil, and the effect of these channels were investigated on aerodynamic noise and aerodynamic performance, experimentally and numerically. The results have shown several factors that could affect the aerodynamic noise such as flow velocity, angle of attack, and trailing edge blowing injection. The study also concluded an increase in drag coefficients and a decrease in lift coefficients for all channeled samples compared to the regular aerofoil. In contrast to the studies that showed improvements in the aerodynamic performance of supersonic channeled aerofoils, this study done under subsonic flow showed an increase in drag and decrease in lift.","PeriodicalId":21076,"journal":{"name":"Renewable Energy and Power Quality Journal","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental and Numerical Investigation of Channeling Effects on Noise and Aerodynamic Performance of NACA 0012 Aerofoil in Wind Turbine Applications\",\"authors\":\"Hussein K. Mohammad, S. Jali, Arz Qwam Alden, V. Kilchyk, B. Shrestha\",\"doi\":\"10.24084/repqj21.328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wind power is considered one of the main sources of renewable energy in the market today. In this study, different sizes and directions of channels were created inside the NACA 0012 aerofoil, and the effect of these channels were investigated on aerodynamic noise and aerodynamic performance, experimentally and numerically. The results have shown several factors that could affect the aerodynamic noise such as flow velocity, angle of attack, and trailing edge blowing injection. The study also concluded an increase in drag coefficients and a decrease in lift coefficients for all channeled samples compared to the regular aerofoil. In contrast to the studies that showed improvements in the aerodynamic performance of supersonic channeled aerofoils, this study done under subsonic flow showed an increase in drag and decrease in lift.\",\"PeriodicalId\":21076,\"journal\":{\"name\":\"Renewable Energy and Power Quality Journal\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Renewable Energy and Power Quality Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24084/repqj21.328\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable Energy and Power Quality Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24084/repqj21.328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

摘要

风力发电被认为是当今市场上可再生能源的主要来源之一。在NACA 0012翼型内部建立了不同尺寸和方向的通道,通过实验和数值方法研究了这些通道对气动噪声和气动性能的影响。结果表明,气流速度、迎角和尾缘吹注等因素对气动噪声的影响较大。该研究还得出结论,与常规翼型相比,所有通道样品的阻力系数都有所增加,升力系数有所降低。与显示超音速通道翼型气动性能改善的研究相反,这项在亚音速流动下进行的研究显示阻力增加而升力减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental and Numerical Investigation of Channeling Effects on Noise and Aerodynamic Performance of NACA 0012 Aerofoil in Wind Turbine Applications
Wind power is considered one of the main sources of renewable energy in the market today. In this study, different sizes and directions of channels were created inside the NACA 0012 aerofoil, and the effect of these channels were investigated on aerodynamic noise and aerodynamic performance, experimentally and numerically. The results have shown several factors that could affect the aerodynamic noise such as flow velocity, angle of attack, and trailing edge blowing injection. The study also concluded an increase in drag coefficients and a decrease in lift coefficients for all channeled samples compared to the regular aerofoil. In contrast to the studies that showed improvements in the aerodynamic performance of supersonic channeled aerofoils, this study done under subsonic flow showed an increase in drag and decrease in lift.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Renewable Energy and Power Quality Journal
Renewable Energy and Power Quality Journal Energy-Energy Engineering and Power Technology
CiteScore
0.70
自引率
0.00%
发文量
147
期刊最新文献
Experimental set-up to study power quality in single-phase split-phase distribution systems Analysis of Synthetic Inertia Applied to Wind Farms Cosine Windows in Interpolated DFT-based Method for an Accurate High-Frequency Distortion Assessment in Power Systems Thermal and electrical performance prediction of an FSPV system: a case study in the Douro/Portugal climatic conditions I-V Characteristics Measuring System for PV Generator based on PDM Inverter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1