{"title":"利用遗传算法从点云建模屋顶","authors":"Natália Sabariego, J. Centeno","doi":"10.1590/s1982-21702020000100004","DOIUrl":null,"url":null,"abstract":"Building roof extraction has been studied for more than thirty years and it generates models that provide important information for many applications, especially urban planning. The present work aimed to model roofs only from point clouds using genetic algorithms (GAs) to develop a more automatized and efficient method. For this, firstly, an algorithm for edge detection was developed. Experiments were performed with simulated and real point clouds, obtained by LIDAR. In the experiments with simulated point clouds, three types of point clouds with different complexities were created, and the effects of noise and scan line spacing on the results were evaluated. For the experiments with real point clouds, five roofs were chosen as examples, each with a different characteristic. GAs were used to select, among the points identified during edge detection, the so-called ‘significant points’, those which are essential to the accurate reconstruction of the roof model. These points were then used to generate the models, which were assessed qualitatively and quantitatively. Such evaluations showed that the use of GAs proved to be efficient for the modeling of roofs, as the model geometry was satisfactory, the error was within an acceptable range, and the computational effort was clearly reduced.","PeriodicalId":55347,"journal":{"name":"Boletim De Ciencias Geodesicas","volume":"120 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2020-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"MODELING OF ROOFS FROM POINT CLOUDS USING GENETIC ALGORITHMS\",\"authors\":\"Natália Sabariego, J. Centeno\",\"doi\":\"10.1590/s1982-21702020000100004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Building roof extraction has been studied for more than thirty years and it generates models that provide important information for many applications, especially urban planning. The present work aimed to model roofs only from point clouds using genetic algorithms (GAs) to develop a more automatized and efficient method. For this, firstly, an algorithm for edge detection was developed. Experiments were performed with simulated and real point clouds, obtained by LIDAR. In the experiments with simulated point clouds, three types of point clouds with different complexities were created, and the effects of noise and scan line spacing on the results were evaluated. For the experiments with real point clouds, five roofs were chosen as examples, each with a different characteristic. GAs were used to select, among the points identified during edge detection, the so-called ‘significant points’, those which are essential to the accurate reconstruction of the roof model. These points were then used to generate the models, which were assessed qualitatively and quantitatively. Such evaluations showed that the use of GAs proved to be efficient for the modeling of roofs, as the model geometry was satisfactory, the error was within an acceptable range, and the computational effort was clearly reduced.\",\"PeriodicalId\":55347,\"journal\":{\"name\":\"Boletim De Ciencias Geodesicas\",\"volume\":\"120 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Boletim De Ciencias Geodesicas\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1590/s1982-21702020000100004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boletim De Ciencias Geodesicas","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/s1982-21702020000100004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
MODELING OF ROOFS FROM POINT CLOUDS USING GENETIC ALGORITHMS
Building roof extraction has been studied for more than thirty years and it generates models that provide important information for many applications, especially urban planning. The present work aimed to model roofs only from point clouds using genetic algorithms (GAs) to develop a more automatized and efficient method. For this, firstly, an algorithm for edge detection was developed. Experiments were performed with simulated and real point clouds, obtained by LIDAR. In the experiments with simulated point clouds, three types of point clouds with different complexities were created, and the effects of noise and scan line spacing on the results were evaluated. For the experiments with real point clouds, five roofs were chosen as examples, each with a different characteristic. GAs were used to select, among the points identified during edge detection, the so-called ‘significant points’, those which are essential to the accurate reconstruction of the roof model. These points were then used to generate the models, which were assessed qualitatively and quantitatively. Such evaluations showed that the use of GAs proved to be efficient for the modeling of roofs, as the model geometry was satisfactory, the error was within an acceptable range, and the computational effort was clearly reduced.
期刊介绍:
The Boletim de Ciências Geodésicas publishes original papers in the area of Geodetic Sciences and correlated ones (Geodesy, Photogrammetry and Remote Sensing, Cartography and Geographic Information Systems).
Submitted articles must be unpublished, and should not be under consideration for publication in any other journal. Previous publication of the paper in conference proceedings would not violate the originality requirements. Articles must be written preferably in English language.